Math, asked by shubhadachawde, 1 year ago

Write the quadratic equation whose roots are -1 and -2

Answers

Answered by Róunak
12
Hye mate.
_______

Given,

Roots of the quadratic equation = -1 , -2

Thus,

( x + 1 ) ( x + 2 ) is the factor of the roots

= x ( x + 2 ) + 1 ( x + 2 )

= x^2 + 2x + x + 2

= x^2 + 3x + 2 , which is the req.d Quadratic Equation.

Hope it helps ✓✓

Answered by Agastya0606
0

The quadratic equation having roots -1 and -2 is x²+3x+2 = 0.

Given,

The roots of a quadratic equation are -1 and -2.

To Find,

The quadratic equation.

Solution,

The formula for calculating the quadratic equation when its roots are given is

x²-(sum of roots)x+(product of roots) = 0

Now, the given roots are -1 and -2.

So,

Sum of roots = -1+(-2) = -1-2 = -3

Product of roots = (-1)(-2) = 2

The required quadratic equation will be

x²-(-3)x+(2) = 0

x²+3x+2 = 0

Hence, the quadratic equation having roots -1 and -2 is x²+3x+2 = 0.

#SPJ3

Similar questions