Math, asked by RAGHASREE, 1 month ago

. Write the ratio in which the line segment joining points (2, 3) and (3,-2) is divided by X axis.​

Answers

Answered by Anonymous
46

 \tt \blue{ Let:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue \bullet \footnotesize\tt {  \: \: Ratio \:  =  \: k:1 }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\tt \blue{ \:Solution:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue \bullet \footnotesize\tt {  \: M1 = k }

\blue \bullet \footnotesize\tt {  \: M1 = 2 }

\blue \bullet \footnotesize\tt {  \: y = 0 }

\blue \bullet \footnotesize\tt {  \: y1 = 3 }

\blue \bullet \footnotesize\tt {  \: y2 = -2 }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\tt \blue{\: Using \:  Section  \: formula }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \blue \mapsto \footnotesize \tt{ y } \tt{ \: = \frac{m1y2 \:  -  \: m2y1}{m1  \: + \:  m2} }

\blue \mapsto \footnotesize \tt{ 0} \tt{  \: = \frac{k( - 2) \:   +  \: 1(3)}{k  \: + \: 1} }

 \blue \mapsto\footnotesize \tt{ 0 } \tt{ \: = \frac{ - 2k\:   +  \: 3}{k  \: + \: 1} }

 \blue \mapsto\footnotesize\tt{ 0  ( k + 1)=  - 2k\:   + 3}

 \blue \mapsto\footnotesize\tt{ 0 =  - 2k\:   + 3}

\blue \mapsto \footnotesize\tt{ 0 - 3 =  - 2k\: }

 \blue \mapsto\footnotesize\tt{  - 3=  - 2k\: }

\blue \mapsto \footnotesize\tt{   \cancel- 3= \cancel  - 2k\: }

 \blue \mapsto\footnotesize\tt{  3=   2k}

\blue \mapsto\boxed{ \boxed{ \underline{\underline{\footnotesize\tt{  \blue \bullet \: k =  \frac{3}{2} }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \mapsto\tt \blue{  Ratio = 3:2 }

Attachments:
Similar questions