Math, asked by kapasipurva163, 1 month ago

write the rationalize factor of
 \frac{1}{ \sqrt{7 -  \sqrt{4} } }

Answers

Answered by ridhimag47
4

Step-by-step explanation:

Answer:

Example 1:

{\displaystyle {\frac {10}{\sqrt {a}}}}{\frac {10}{\sqrt {a}}}

To rationalise this kind of expression, bring in the factor {\displaystyle {\sqrt {a}}}{\sqrt {a}}:

{\displaystyle {\frac {10}{\sqrt {a}}}={\frac {10}{\sqrt {a}}}\cdot {\frac {\sqrt {a}}{\sqrt {a}}}={\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}}{\displaystyle {\frac {10}{\sqrt {a}}}={\frac {10}{\sqrt {a}}}\cdot {\frac {\sqrt {a}}{\sqrt {a}}}={\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}}

The square root disappears from the denominator, because it is squared:

{\displaystyle {\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}={\frac {10{\sqrt {a}}}{a}}}{\displaystyle {\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}={\frac {10{\sqrt {a}}}{a}}}

This gives the result, after simplification:

{\displaystyle {\frac {10{\sqrt {a}}}{a}}}{\frac {10{\sqrt {a}}}{a}}

you can solve like this

please mark me as brainlist

Similar questions