Write the rationalizing factor of the denominator in 1/root 2+root 2
Answers
↪ Here is your answer :
\begin{lgathered}\sqrt{x} \div \sqrt{2} + \sqrt{2 } \\ \sqrt{x} \div \sqrt{2} + \sqrt{2} \times \sqrt{2} - \sqrt{2} \div \sqrt{2} - \sqrt{2} \\ \sqrt{x} ( \sqrt{2} - \sqrt{2} ) \div ( \sqrt{2} + \sqrt{2} )( \sqrt{2} - \sqrt{2} ) \\ now \: the \: denominator \: becomes \: an \: identity \: which \: is \: (a + b) \: (a - b) = (a ^{2} - b ^{2} ) \\ so \: (\sqrt{2} ^{2} ) - ( \sqrt{2} ^{2} ) = 2 - 2 = 0 \\ so \: \sqrt{x} ( \sqrt{2} - \sqrt{2} ) \div 0\end{lgathered}x÷2+2x÷2+2×2−2÷2−2x(2−2)÷(2+2)(2−2)nowthedenominatorbecomesanidentitywhichis(a+b)(a−b)=(a2−b2)so(22)−(22)=2−2=0sox(2−2)÷0
{Here\:the\:denominator \:is\:0\:which \:is\:a\:rational\:number}Herethedenominatoris0whichisarationalnumber
{\huge{\underline{\underline{\mathbb{\bold{\mathcal{Don't\:forget\:to\:follow\:meh\:dear...}}}}}}}Don′tforgettofollowmehdear...
Follow back..............❣