Math, asked by manvvb5ijitha, 1 year ago

write the roots of the equation x 2 +x-p(p+1) where p is constant

Answers

Answered by kchandankhushi
6
this is the answer for ur question...if u find it usefull..please mark it as the brainliest..
Attachments:
Answered by hotelcalifornia
0

Answer:

The roots of the given equation are x=p,-p-1

Solution:

Given:

\begin{array} { c } { \mathrm { x } ^ { 2 } + \mathrm { x } - \mathrm { p } ( \mathrm { p } + 1 ) = 0 } \\\\ { \mathrm { x } ^ { 2 } + \mathrm { x } - \mathrm { p } ^ { 2 } - \mathrm { p } = 0 } \\\\ { \mathrm { x } ^ { 2 } - \mathrm { p } ^ { 2 } + \mathrm { x } - \mathrm { p } = 0 } \end{array}

The formula for a^2-b^2=(a+b)(a-b)

\begin{array} { c } { ( \mathrm { x } + \mathrm { p } ) ( \mathrm { x } - \mathrm { p } ) + ( \mathrm { x } - \mathrm { p } ) = 0 } \\\\ { ( \mathrm { x } - \mathrm { p } ) ( \mathrm { x } + \mathrm { p } + 1 ) = 0 } \\\\ { \mathrm { x } - \mathrm { p } = 0 } \\\\ { x = p } \end{array}

\begin{array} { l } { x + p + 1 = 0 } \\\\ { x = - p - 1 } \end{array}

Hence, the roots of the given equation are x=p, -p-1

Similar questions