write the set builder form of A={1,¼,¹/9,¹/16,¹/25}
Answers
Answer:
The set builder form of A is A=\{\frac{1}{x^2}:x\leq 5,x\in N\}A={
x
2
1
:x≤5,x∈N} .
Step-by-step explanation:
The given set is
A=\{1,\frac{1}{4},\frac{1}{9},\frac{1}{16},\frac{1}{25}\}A={1,
4
1
,
9
1
,
16
1
,
25
1
}
1=\frac{1}{1^2}1=
1
2
1
\frac{1}{4}=\frac{1}{2^2}
4
1
=
2
2
1
\frac{1}{9}=\frac{1}{3^2}
9
1
=
3
2
1
\frac{1}{16}=\frac{1}{4^2}
16
1
=
4
2
1
\frac{1}{25}=\frac{1}{5^2}
25
1
=
5
2
1
Therefore the number is in the form of \frac{1}{x^2}
x
2
1
, where x is a natural number less than equal to 5.
A=\{\frac{1}{x^2}:x\leq 5,x\in N\}A={
x
2
1
:x≤5,x∈N}
Therefore set builder form of A is A=\{\frac{1}{x^2}:x\leq 5,x\in N\}A={
x
2
1
:x≤5,x∈N} .
Answer:
variables representing an arbitrary member of set. ... The set A = {0, 1, 4, 9, . ... (i) {x О N : x2 < 25}. (ii) {x О R ... (a) {x : x О N : 9 < x < 16} (b) {x2 : x О N; 1 £ x £ 10} (c) 1. 2. 2 ... Solution : (i) Yes (ii) No, A ¹ B, as 12 О A and 12 П B (iii) Yes ... (iv) [– 23, 5) ={x : x О R, – 23 £ x < 5}. 8.
Step-by-step explanation:
mark as brainlist