Math, asked by alwinappu88, 5 months ago

write the Set of all natural numbers
such that 4x+9<50
in rostes form​

Answers

Answered by mysticd
1

 \underline { \pink{ Set \:builder \: form \: of \: set \: A:}}

 A = \{ x : 4x + 9 \lt 50 , \: x \in N \}

 i) If \: x = 1 \: then \\4\times 1 + 9 = 4 + 9 \\= 13 \lt 50 \: \blue { ( True ) }

 ii) If \: x = 2 \: then \\4\times 2 + 9 = 8 + 9 \\= 17 \lt 50 \: \blue { ( True ) }

 iii) If \: x = 3 \: then \\4\times 3+ 9 = 12 + 9 \\= 17 \lt 50 \: \blue { ( True ) }

 iv) If \: x = 4 \: then \\4\times 4 + 9 = 16 + 9 \\= 25 \lt 50 \: \blue { ( True ) }

 v) If \: x = 5 \: then \\4\times 5 + 9 = 20 + 9 \\= 29 \lt 50 \: \blue { ( True ) }

 vi) If \: x = 6\: then \\4\times 6 + 9 = 24 + 9 \\= 33 \lt 50 \: \blue { ( True ) }

 vii) If \: x = 7 \: then \\4\times 7 + 9 = 28 + 9 \\= 38 \lt 50 \: \blue { ( True ) }

 viii) If \: x = 8 \: then \\4\times 8+ 9 = 32+ 9 \\= 37 \lt 50 \: \blue { ( True ) }

 ix) If \: x = 9 \: then \\4\times 9 + 9 = 36 + 9 \\= 45 \lt 50 \: \blue { ( True ) }

 x) If \: x = 10 \: then \\4\times 10 + 9 = 40 + 9 \\= 49 \lt 50 \: \blue { ( True ) }

 xi) If \: x = 11 \: then \\4\times 11 + 9 = 44 + 9 \\= 53 \lt 50 \: \red { ( False ) }

 \underline {\pink{ Roster \: builder \: form \:of \:Set \: A }}

 \red{A } \green { = \{ 1,2,3,4,5,6,7,8,9,10\}}

•••♪

Answered by nigamrubin
0

Answer:

N = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Step-by-step explanation:

natural no. (1 )-- 4 × 1 + 9= 13 (<50)

natural no. (2 )-- 4 × 2 + 9= 17 (<50)

natural no. (3 )-- 4 × 3 + 9= 21 (<50)

natural no. (4)-- 4 × 4 + 9= 25 (<50)

natural no. (5 )-- 4 × 5 + 9= 29 (<50)

natural no. (6)-- 4 × 6 + 9= 33 (<50)

natural no. (7)-- 4 × 7  + 9= 37 (<50)

natural no. (8 )-- 4 × 8 + 9= 41 (<50)

natural no. (9)-- 4 × 9 + 9= 45 (<50)

natural no. (10 )-- 4 × 10 + 9= 49 (<50)

Similar questions