Write the set of values of x for which tan^{-1}\:\left(\frac{2x}{1+x^2}\right)=2tan^{-1}
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given : 2tan−1x=cos−11+x21−x2
Substitute x=tanθ
⟹2tan−1x=2tan−1(tanθ)2θ
cos−1(1+x21−x2)
=cos−1(1+tan2θ1−tan2θ)
=cos−1(cos2θ−sin2θcos2θ−sin2θ)=cos−1(cos2θ)=2θ=LHS
∴LHS=RHS holds for x=tanθ
∵tanθ∈(0,∞)
⟹x∈(0,∞)
October 15, 2019
avatar
Toppr
Answered by
0
Answer:
Step-by-step explanation:
Given : 2tan-1x=cos-11+x21-x2
Substitute x=tane
2tan-1x=2tan-1(tano)20
cos-1(1+x21-x2)
=cos-1(1+tan 201-tan20)
cos-1(cos20-sin2ecos20-sin2e
)=cos-1(cos20)=28=LHS
:-LHSERHS holds for x=tano
tane E(0,00)
x+(0,…)
Similar questions
Math,
5 months ago
Math,
10 months ago
Computer Science,
10 months ago
Science,
1 year ago
Science,
1 year ago