Math, asked by sandra2040, 1 year ago

Write the simplest form of tan inverse of 3cosx - 4 sinx/ 4 cosx +3sinx

Answers

Answered by brunoconti
19

Answer:

Step-by-step explanation:

Attachments:
Answered by guptasingh4564
14

the simplest from is tan^{-\frac{3}{4} } -x

Step-by-step explanation:

Given;

tan^{-\frac{3cosx-4sinx}{4cosx+3sinx} }=?

Let;

   a=\frac{3cosx-4sinx}{4cosx+3sinx}

a=\frac{3-4tanx}{4+3tanx}  (∵ By dividing numerator and denominator with cosx)

a=\frac{\frac{3}{4} -tanx}{1+\frac{3}{4} tanx}  (∵ By dividing numerator and denominator with 4)

a=\frac{tany -tanx}{1+tany tanx}  Where tany=\frac{3}{4}

a=tan(y-x)   (∵\frac{tana -tanb}{1+tana tanb}=tan(a-b) )

From main equation;

tan^{-\frac{3cosx-4sinx}{4cosx+3sinx} }=tan^{-a}

Plug the value of a;

=tan^{-tan(y-x)}

=(y-x)  since range of tan values lies between (-\frac{\pi}{2} ,\frac{\pi}{2} )

=tan^{-\frac{3}{4} } -x  (∵y=tan^{-\frac{3}{4} } )

So the simplest from is tan^{-\frac{3}{4} } -x

Similar questions