write the smallest digit and the greatest digit in the blank space of each of the following numbers so that the number formed is divisible by 3.
a) __6724
b) 4765__2
Answers
Hey !
Here, Divisibility rule of 3 comes into picture.
Divisibility rule of 3:
It states that a number is divisible by 3 only when it's sum of the digits are divisible by 3.
Now,
a) __6724
Step-1 :
Find the sum of the digits of the number, assuming x as missing digit
=> x + 6+ 7 + 2 + 4
=> x + 19
Step-2:
Consider the nearest multiple to get the smallest digit
Nearest multiple of 3 after 19 is 21
For the sum of the digits to be equal to 21, find the value of missing digit
=> x+19 = 21
=> x = 21 - 19
=> x = 2
Step-3
Use trial and error Method, to get the greatest digit for missing digit
Consider sum of the digits again
=> x+19
Since, the greatest digit for a single digit is 9, we approach the numbers from 9 to 1
Digit --- Sum ----- Total ----- Divisible by 3
9 ------- 9+19 ------ 28 ------------- No
8 ------ 8+19 ------- 27 ------------- YES (9 times of 3)
so, the Greatest digit is 8
Answer :
(2)6724 - Filled Smallest digit
(8)6724 - Filled Greatest digit
Both are divisible by 3.
b)
4765__2
Step-1 :
Find the sum of the digits of the number, assuming x as missing digit
=> 4 + 7 + 6 + 5 + x + 2
=> x + 24
Step-2:
Here, 24 is itself divisible by 3, x can be zero as it is not the starting digit.
•°• Least digit = 0
Step-3
Use trial and error Method, to get the greatest digit for missing digit
Consider sum of the digits again
=> x+24
Since, the greatest digit for a single digit is 9, we approach the numbers from 9 to 1
Digit --- Sum ----- Total ----- Divisible by 3
9 ------- 9+24 ------ 33 ------------- YES (11 times of 3)
•°• Greatest digit = 9
Answer :
4765(0)2 - Filled Smallest digit
6765(9)2 - Filled Greatest digit
Both are divisible by 3
Meowwww xD
Hey guys how r u ���
Here, Divisibility rule of 3 comes into picture.
Divisibility rule of 3:
It states that a number is divisible by 3 only when it's sum of the digits are divisible by 3.
Now,
a) __6724
Step-1 :
Find the sum of the digits of the number, assuming x as missing digit
=> x + 6+ 7 + 2 + 4
=> x + 19
Step-2:
Consider the nearest multiple to get the smallest digit
Nearest multiple of 3 after 19 is 21
For the sum of the digits to be equal to 21, find the value of missing digit
=> x+19 = 21
=> x = 21 - 19
=> x = 2
Step-3
Use trial and error Method, to get the greatest digit for missing digit
Consider sum of the digits again
=> x+19
Since, the greatest digit for a single digit is 9, we approach the numbers from 9 to 1
Digit --- Sum ----- Total ----- Divisible by 3
9 ------- 9+19 ------ 28 ------------- No
8 ------ 8+19 ------- 27 ------------- YES (9 times of 3)
so, the Greatest digit is 8
Answer :
(2)6724 - Filled Smallest digit
(8)6724 - Filled Greatest digit
Both are divisible by 3.
b)4765__2
Step-1 :
Find the sum of the digits of the number, assuming x as missing digit
=> 4 + 7 + 6 + 5 + x + 2
=> x + 24
Step-2:
Here, 24 is itself divisible by 3, x can be zero as it is not the starting digit.
•°• Least digit = 0
Step-3
Use trial and error Method, to get the greatest digit for missing digit
Consider sum of the digits again
=> x+24
Since, the greatest digit for a single digit is 9, we approach the numbers from 9 to 1
Digit --- Sum ----- Total ----- Divisible by 3
9 ------- 9+24 ------ 33 ------------- YES (11 times of 3)
•°• Greatest digit = 9
Answer :
4765(0)2 - Filled Smallest digit
6765(9)2 - Filled Greatest digit
Both are divisible by 3.
#keepsmilingalways