Math, asked by dittobhattacharyya, 18 days ago

Write the solution interval of the inequality: 4(2x-1) -11 ≥ 7​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: 4(2x - 1) - 11 \geqslant 7 \\

\rm \: 8x - 4 - 11 \geqslant 7 \\

\rm \: 8x  - 15 \geqslant 7 \\

\rm \: 8x  \geqslant 7 + 15 \\

\rm \: 8x  \geqslant22 \\

\rm \: x \geqslant \dfrac{22}{8}  \\

\bf\implies \: x \geqslant \dfrac{11}{4}  \\

\bf\implies \: x \: \in \: \bigg[ \dfrac{11}{4}, \:  \infty \bigg)  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  < y\rm\implies \: - y < x < y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  > y\rm\implies \: x <  - y \: or \: x > y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  < y\rm\implies \:a - y < x < a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by kvalli8519
2

Given,

 \bf 4(2x - 1) - 11 \geqslant 7

write the solution of the given inequality

SOLUTION :-

\tt⇢ \: \:4(2x - 1) - 11 \geqslant 7

\tt⇢ \: \:4 \times (2x - 1) \geqslant 7 + 11

\tt⇢ \: \:8x - 4 \geqslant 18

\tt⇢ \: \:8x \geqslant 18 + 4

\tt⇢ \: \:x  \geqslant  \frac{22}{8}

\tt⇢ \: \:x \geqslant  \frac{11}{4}

FINAL ANSWER :-

The solutions of the given inequality are

 \huge \bf x \in  \huge{[ } {\frac{11}{4} , \infty} )

Similar questions