Math, asked by Anonymous, 1 year ago

Write the solution set of the following inequlity :

\displaystyle{\dfrac{1}{2^x-1}\  \textgreater \ \frac{1}{1-2^{x-1}}}

Answers

Answered by Swarup1998
14

Solution:

The given inequality is

    \frac{1}{2^{x}-1}>\frac{1}{1-2^{x-1}}

If we take x < 0, we will face a contradiction.

Let, x = - 1

L.H.S. = \frac{1}{2^{-1}-1} = - 2 &

R.H.S. = \frac{1}{1-2^{-1-1}} = 4/3

But - 2 is not greater than 4/3

So we take x > 0

Now, \frac{1}{2^{x}-1}&gt;\frac{1}{1-2^{x-1}}

   or, \frac{1}{2^{x}-1}&gt;-\frac{2}{2^{x}-2}

   or, \frac{1}{2^{x}-1}+\frac{2}{2^{x}-2}&gt;0

   or, \frac{2^{x}-2+2.2^{x}-2}{(2^{x}-1)(2^{x}-2)}&gt;0

   or, \frac{3.2^{x}-4}{(2^{x}-1)(2^{x}-2)}&gt;0

Since x > 0, we take both the numerator and the denominator to be > 0, because if we take both of them to be < 0, we will attain a value from 2^{x}-1 &lt;0 that x < 0, a contradiction.

Now, 3.2^{x}-4&gt;0

   or, 2^{x}&gt;\frac{4}{3}

   or, x&gt;\frac{log\frac{4}{3}}{log2} ,

2^{x}-2&gt;0

or, 2^{x}&gt;2^{1}

or, x > 1 and

2^{x}-1&gt;0

or, 2^{x}&gt;2^{0}

or, x > 0

Therefore, the required solution is

    0 < x < \frac{log\frac{4}{3}}{log2} , x > 1

Attachments:
Similar questions