Math, asked by 00UnknownBrain00, 10 months ago

write the square binomial (3x-1/3x)²​

Answers

Answered by mysticd
9

Answer:

\red {\left( 3x - \frac{1}{3x}\right)^{2}}

\green {= 9x^{2} - 2 + \frac{1}{9x^{2}}}

Step-by-step explanation:

 \left( 3x - \frac{1}{3x}\right)^{2}

 = (3x)^{2} - 2\times 3x \times  \left(\frac{1}{3x}\right) + \left(\frac{1}{3x}\right)^{2}

\boxed { \pink { (a-b)^{2} = a^{2}-2ab+b^{2}}}

 = 9x^{2} - 2 + \frac{1}{9x^{2}}

Therefore.,

\red {\left( 3x - \frac{1}{3x}\right)^{2}}

\green {= 9x^{2} - 2 + \frac{1}{9x^{2}}}

•••♪

Answered by sakshisaar
0

Step-by-step explanation:

(3x−

3x

1

)

2

\green {= 9x^{2} - 2 + \frac{1}{9x^{2}}}=9x

2

−2+

9x

2

1

Step-by-step explanation:

\left( 3x - \frac{1}{3x}\right)^{2}(3x−

3x

1

)

2

= (3x)^{2} - 2\times 3x \times \left(\frac{1}{3x}\right) + \left(\frac{1}{3x}\right)^{2}=(3x)

2

−2×3x×(

3x

1

)+(

3x

1

)

2

\boxed { \pink { (a-b)^{2} = a^{2}-2ab+b^{2}}}

(a−b)

2

=a

2

−2ab+b

2

= 9x^{2} - 2 + \frac{1}{9x^{2}}=9x

2

−2+

9x

2

1

Therefore.,

\red {\left( 3x - \frac{1}{3x}\right)^{2}}(3x−

3x

1

)

2

\green {= 9x^{2} - 2 + \frac{1}{9x^{2}}}=9x

2

−2+

9x

2

1

•••♪

Similar questions