English, asked by basantathoudam321, 18 days ago

write the substance of poem 'truth'​

Answers

Answered by santoshsenapati2003
3

Answer:

mark me as Brainliest

Explanation:

The title, 'The Truth', suggests that truth is the greatest virtue. Being truthful is very important. But truth generally is bitter. Therefore, if one has to speak the bitter truth it should not be spoken in harsh and unpalatable words, for harsh and bitter words can deeply hurt the listener.

Answered by shara57
4

Answer:

Answer:

i) The curved surface area of cylinderical petrol tank is 59.4 m².

ii) The steel actually used to make the tank is 95.04 m².

Step-by-step-explanation:

We have given that,

For a cylinderical petrol tank,

Diameter ( d ) = 4.2 m

∴ Radius ( r ) = d ÷ 2 = 4.2 ÷ 2 = 2.1 m

Height ( h ) = 4.5 m

We have to find,

i) Curved surface area of tank

ii) Total steel used to make tank

i)

Now, we know that,

\displaystyle{\pink{\sf\:Curved\:surface\:area\:of\:cylinder\:=\:2\:\pi\:r\:h}}Curvedsurfaceareaofcylinder=2πrh

\displaystyle{\implies\sf\:CSA_{cylinder}\:=\:2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{2.1}\:\times\:4.5}⟹CSA

cylinder

=2×

7

22

×

2.1

×4.5

\displaystyle{\implies\sf\:CSA_{cylinder}\:=\:2\:\times\:22\:\times\:0.3\:\times\:4.5}⟹CSA

cylinder

=2×22×0.3×4.5

\displaystyle{\implies\sf\:CSA_{cylinder}\:=\:22\:\times\:0.3\:\times\:9}⟹CSA

cylinder

=22×0.3×9

\displaystyle{\implies\sf\:CSA_{cylinder}\:=\:198\:\times\:0.3}⟹CSA

cylinder

=198×0.3

\displaystyle{\implies\sf\:CSA_{cylinder}\:=\:59.4\:m^2}⟹CSA

cylinder

=59.4m

2

\therefore\:\underline{\boxed{\red{\sf\:Curved\:surface\:area\:of\:cylinder\:=\:59.4\:m^2\:}}}∴

Curvedsurfaceareaofcylinder=59.4m

2

────────────────────────

ii)

Now,

The tank is closed with steel.

We have to find how much steel was used to make the tank.

Now,

\displaystyle{\pink{\sf\:Total\:surface\:area\:of\:cylinder\:=\:2\:\pi\:r\:(\:r\:+\:h\:)}}Totalsurfaceareaofcylinder=2πr(r+h)

\displaystyle{\implies\sf\:TSA_{cylinder}\:=\:2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{2.1}\:(\:2.1\:+\:4.5\:)}⟹TSA

cylinder

=2×

7

22

×

2.1

(2.1+4.5)

\displaystyle{\implies\sf\:TSA_{cylinder}\:=\:2\:\times\:22\:\times\:0.3\:\times\:6.6}⟹TSA

cylinder

=2×22×0.3×6.6

\displaystyle{\implies\sf\:TSA_{cylinder}\:=\:22\:\times\:0.3\:\times\:13.2}⟹TSA

cylinder

=22×0.3×13.2

\displaystyle{\implies\sf\:TSA_{cylinder}\:=\:22\:\times\:3.96}⟹TSA

cylinder

=22×3.96

\displaystyle{\implies\sf\:TSA_{cylinder}\:=\:87.12\:m^2}⟹TSA

cylinder

=87.12m

2

\therefore\:\underline{\boxed{\green{\sf\:Total\:surface\:area\:of\:cylinder\:=\:87.12\:m^2\:}}}∴

Totalsurfaceareaofcylinder=87.12m

2

Now, from the given condition,

\displaystyle{\pink{\sf\:Steel\:used\:to\:make\:tank\:-\:Steel\:wasted\:=\:Total\:surface\:area\:of\:cylinder}}Steelusedtomaketank−Steelwasted=Totalsurfaceareaofcylinder

\displaystyle{\implies\sf\:Steel\:used\:-\:\dfrac{1}{12}\:Steel\:used\:=\:TSA_{cylinder}}⟹Steelused−

12

1

Steelused=TSA

cylinder

\displaystyle{\implies\sf\:Steel\:used\:\left(\:1\:-\:\dfrac{1}{12}\:\right)\:=\:87.12}⟹Steelused(1−

12

1

)=87.12

\displaystyle{\implies\sf\:Steel\:used\:\left(\:\dfrac{12\:-\:1}{12}\:\right)\:=\:87.12}⟹Steelused(

12

12−1

)=87.12

\displaystyle{\implies\sf\:Steel\:used\:\times\:\dfrac{11}{12}\:=\:87.12}⟹Steelused×

12

11

=87.12

\displaystyle{\implies\sf\:Steel\:used\:=\:\dfrac{\cancel{87.12}\:\times\:12}{\cancel{11}}}⟹Steelused=

11

87.12

×12

\displaystyle{\implies\sf\:Steel\:used\:=\:7.92\:\times\:12}⟹Steelused=7.92×12

\displaystyle{\therefore\:\underline{\boxed{\blue{\sf\:Steel\:used\:to\:make\:tank\:=\:95.04\:m^2\:}}}}∴

Steelusedtomaketank=95.04m

2

Similar questions