Math, asked by vijetakumari97478, 1 month ago

write the sum and product of zeros of the polynomial :5x^2-9x-3 . ​

Answers

Answered by ZaraAntisera
0

Answer:

\mathrm{Domain\:of\:}\:5x^2-9x-3\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

\mathrm{Range\:of\:}5x^2-9x-3:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:-\frac{141}{20}\:\\ \:\mathrm{Interval\:Notation:}&\:[-\frac{141}{20},\:\infty \:)\end{bmatrix}

\mathrm{Axis\:interception\:points\:of}\:5x^2-9x-3: \mathrm{X\:Intercepts}: \left(\frac{9+141^{\frac{1}{2}}}{10},\:0\right),\:\left(\frac{9-141^{\frac{1}{2}}}{10},\:0\right), \:\mathrm{Y\:Intercepts}:\:\left(0,\:-3\right)

\mathrm{X\:Intercepts}:\:\left(\frac{9+141^{\frac{1}{2}}}{10},\:0\right),\:\left(\frac{9-141^{\frac{1}{2}}}{10},\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:-3\right)

\mathrm{Vertex\:of}\:5x^2-9x-3:\quad \mathrm{Minimum}\space\left(\frac{9}{10},\:-\frac{141}{20}\right)

Similar questions