English, asked by aksa152, 11 months ago

write the sum and the product of the roots of
2x {}^{2}  + 10x - 5 = 0


Answers

Answered by prakharp7
0
Sum of roots = -5
Product of roots = -5/2
Answered by Anonymous
8

❏ Used ForMuLaS:-

If \alpha \:and \:\beta are two zeroes of the quadratic equation

ax²+bf+c=0

And,the equation holding the sum and the product of the zeroes is given by,

\bf \sf\boxed{x{}^{2}-(\alpha+\beta)x+\alpha \beta=0}

Question:-

Q) write the sum and the product of the roots of

2x {}^{2} + 10x - 5 = 0

❏ Solution:-

❚➾

Now,

\sf\longrightarrow2x {}^{2} + 10x - 5 = 0

\sf\longrightarrow\frac{2x {}^{2} + 10x - 5}{2} = \frac{0}{2}

\sf\longrightarrow\frac{2x {}^{2}}{2} + \frac{10x}{2} - \frac{5}{2}= \frac{0}{2}

\sf\longrightarrow\frac{\cancel2x {}^{2}}{\cancel2} + \frac{\cancel{10}x}{\cancel2} - \frac{5}{2}= \frac{0}{2}

\sf\longrightarrow \boxed{x {}^{2}+ 5x - \frac{5}{2}= 0}.........(i)

Now, comparing the equation (i) with the equation, x²-(\alpha+\beta)x+\alpha \beta=0,

we get,

➝ (\sf\bf \alpha+\beta)= -5

And,

➝ (\sf\bf \alpha\beta)=(\bf\sf\frac{-5}{2})

Sum of zeroes= -5

Product if zeroes= \sf\bf\frac{-5}{2}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions