write the sum of zeroes
3x2 -x-4
Answers
GIVEN :-
- A quadratic polynomial 3x² - x - 4 = 0.
TO FIND :-
- The sum of zeroes [ ɑ + β ].
SOLUTION :-
Let us assume that,
⇒ ɑ = [ -b + √( b² - 4ac ) ] / 2a.
- a = 3.
- b = -1.
- c = -4.
⇒ ɑ = [-(-1) + √{(-1)² - 4 × 3 × (-4)}]/2 × 3
⇒ ɑ = [1 + √{1 - 12 × (-4)}]/6
⇒ ɑ = [1 + √{1 - (-48)}]/6
⇒ ɑ = [1 + √(1 + 48)]/6
⇒ ɑ = [1 + √49]/6
⇒ ɑ = (1 + 7)/6
⇒ ɑ = 8/6
⇒ ɑ = 4/3.
Now Similarly we will find the value of β,
⇒ β = [ -b - √( b² - 4ac ) ] / 2a.
- a = 3.
- b = -1.
- c = -4.
⇒ β = [-(-1) - √{(-1)² - 4 × 3 × (-4)}]/2 × 3
⇒ β = [1 - √{1 - 12 × (-4)}]/6
⇒ β = [1 - √{1 - (-48)}]/6
⇒ β = [1 - √(1 + 48)]/6
⇒ β = [1 - √49]/6
⇒ β = (1 - 7)/6
⇒ β = -6/6
⇒ β = -1.
Now according to question we have to find the value of ɑ + β , So,
⇒ ɑ + β = 4/3 + (-1)
⇒ ɑ + β = 4/3 - 1
⇒ ɑ + β = (4 - 3)/3
⇒ ɑ + β = 1/3
Hence the sum of the zeroes of the given quadratic polynomial is 1/3.
Alternative method :-
⇒ ɑ + β = (-coefficient of x)/(cofficient of x²)
⇒ ɑ + β = -b/a
⇒ ɑ + β = -(-1)/3
⇒ ɑ + β = 1/3
Hence the sum of the zeroes of the given quadratic polynomial is 1/3.
Given:-
- Quadratic eq. 3x² - x - 4 = 0
Find:-
- Sum of its zeroes.
Solution:-
Compare 3x² - x - 4 = 0 with ax² + bx + c = 0
So,
a = 3
b = -1
c = -4
Now, we know that
Substituting these values:-