Math, asked by acrmoyh, 5 months ago

write the table for trignometric identities

Answers

Answered by Anonymous
50

\mathfrak{dear\:user}

\mathfrak{question-}\textbf{write the table for trignometric identities}

\mathfrak{here \:is\:the\:solution\:for\:the \:question}

\mathbb {ANSWER}

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

\rightarrow\:Plz \:dont\: copy\:the \:answers\;of \:any\:other \:user

\rightarrow\:If \:you \:need \:more \:identities \:i \:will \:post \:it \:in \:next \:question}

\begin{document}  \begin{large}    \textbf{PROFILE} \\An  genius rank user who can help you in maths,english,science(physics,biology and chemistry) and social to an extent .I will be giving you answers responsibly .Waiting for your next set of  questions

\mathcal{HOPE\:IT \:HELPS \:YOU}

\mathbf {If\:you \:find \:my \:answer \:helpful \:plz \:thank \:it}

\mathcal{BY\: BRAINLY\: ROSHAN }

Answered by Anonymous
4

 \huge\mathfrak\red{answer}

Reciprocal Identities

Sin θ = 1/Csc θ or Csc θ = 1/Sin θ

Cos θ = 1/Sec θ or Sec θ = 1/Cos θ

Tan θ = 1/Cot θ or Cot θ = 1/Tan θ

Pythagorean Identities

sin2 a + cos2 a = 1

1+tan2 a = sec2 a

cosec2 a = 1 + cot2 a

Ratio Identities

Tan θ = Sin θ/Cos θ

Cot θ = Cos θ/Sin θ

Opposite Angle Identities

Sin (-θ) = – Sin θ

Cos (-θ) = Cos θ

Tan (-θ) = – Tan θ

Cot (-θ) = – Cot θ

Sec (-θ) = Sec θ

Csc (-θ) = -Csc θ

Complementary Angles Identities

Sin (90 – θ) = Cos θ

Cos (90 – θ) = Sin θ

Tan (90 – θ) = Cot θ

Cot ( 90 – θ) = Tan θ

Sec (90 – θ) = Csc θ

Csc (90 – θ) = Sec θ

Angle Sum and Difference Identities

Consider two angles , α and β, the trigonometric sum and difference identities are as follows:

sin(α+β)=sin(α).cos(β)+cos(α).sin(β)

sin(α–β)=sinα.cosβ–cosα.sinβ

cos(α+β)=cosα.cosβ–sinα.sinβ

cos(α–β)=cosα.cosβ+sinα.sinβ

tan(α+β)=tanα+tanβ1–tanα.tanβ

tan(α–β)=tanα–tanβ1+tanα.tanβ

Similar questions