Math, asked by anitadolly4, 8 months ago

write the test of divisibituly 2,3,4,
6,8,9 and 11​

Answers

Answered by sahaniramkumar64
0

2.

जिस संख्या के इकाई के स्थान पर 0,2,4,6,8 रहे वह संख्या 2 से विभाजित हो जाता है

3.जिस संख्या के अंकों का योग फल उस संख्या से विभाजित हो जाती है वह संख्या 3 से विभाजित हो जाती है.

4.जिस संख्या के इकाई एवं दहाई अंक 4 से विभाजित हो जाती है वह संख्या 4 से पूर्णतया विवादित हो जाती है

6.जो संख्या दो और तीन से विभाजित हो जाती है वह संख्या 6 से भी विभाजित हो जाती है

8. जिस संख्या के इकाई दहाई एवं से शर्करा स्थान के अंक 8 से विभाजित हो जाती है तो वह संख्या भी आठ से पूर्णतया विभाजित हो जाती है

9.जिस संख्या के अंकों का योग फल 9 से विभाजित हो जाता है वह संख्या भी नौ से पूर्णतया विभाजित हो जाता है

Answered by leenajoshy93
0

Answer:

The test of 2,3,4,6,8,9 and 11 are very simple.

Step-by-step explanation:

Divisibility of 2 - If the last digit of the number is 0,2,4,6,8 etc, the number is divisible by 2.

Ex: 8678, 5562, 9080 etc is divisible by 2.

6453, 4473, 6781 is not divisible by 2.

Divisibility of 3 - If the sum of the digits is a multiple of 3, we say that it is divisible by 3

Ex: 5787, 7833, 1650 is divisible by 3.

2671, 6359, 8293 is not divisible by 3.

Divisibility of 4 - If the last two digits of the number is a multiple of 4, thus we say that it is divisible by 4.

Ex : 8624, 1316, 6308 are divisible by 4

5269, 1734, 6583 are not divisible by 4.

Divisibility of 6 - If the number is divisible by 2 and 3, we say that it is divisible by 6 also.

Ex : 7452, 1980, 5334 are divisible by 6.

Divisibility of 8 - If the last three digits of the number is a multiple of 8, it is also divisible by 8.

Ex : 8448, 7956, 2524 are divisible by 8.

Divisibility of 9 - It is same as we have done for 3. If the sum of the digits is a multiple of 9 we say that it is divisible by 9

Ex : 1620, 5643, 1953 is divisible by 9.

Divisibility of 11 - We have to add the odd and even numbers of the digit's places and subtract it and see if the difference is 0 or 11. If it is, then yes it is divisible.

There are no examples for the divisibility of 11.

I hope you will mark me brainliest for this answer.

Similar questions