Write the trigonometric expression as a sum or difference
3sin2xsin3x
Answers
Answered by
0
sin3x=sin(2x+x)=sin2x.cosx+cos2x.sinx
=2.sinx.cos^2x+(cos^2x-sin^2x).sinx
=3.sinx.cos^2x-sin^3x
=3.sinx(1-sin^2x)-sin^3x
=3.sinx-3.sin^3x-sin^3x
=3.sinx-4.sin^3x
i.e. sin3x=3.sinx-4. sin^3x. ....eq.(1)
& sin2x=2.sinx.cosx. .....eq.(2)
therefore ,
3.sin2x.sin3x=3.2.sinx.cosx(3.sinx-4.sin^3x)
3.sin2x.sin3x=18.sin^2x. cosx-24.sin^3x.
Similar questions