Math, asked by Anonymous, 7 months ago

Write the units digit of 9⁹⁹.

with full explanation!​

Answers

Answered by shadowsabers03
11

We've to find unit digit of 9^{99}.

We can write 9^{99} as,

\longrightarrow9^{99}=(10-1)^{99}

According to binomial theorem,

  • \displaystyle (a-b)^n=\sum_{r=0}^n\ (-1)^r\cdot\,^n\!C_r\,a^{n-r}\,b^r

Taking a=10,\ b=1,\ n=99,

\displaystyle\longrightarrow 9^{99}=\sum_{r=0}^{99}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{99-r}\cdot 1^r

\displaystyle\longrightarrow 9^{99}=\sum_{r=0}^{99}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{99-r}

Let me take final term in the sum (99th term) out of it.

\displaystyle\longrightarrow 9^{99}=\left(\sum_{r=0}^{98}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{99-r}\right)+(-1)^{99}\cdot\,^{99}\!C_{99}\cdot10^{99-99}

\displaystyle\longrightarrow 9^{99}=\left(\sum_{r=0}^{98}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{98-r+1}\right)-1

\displaystyle\longrightarrow 9^{99}=\left(\sum_{r=0}^{98}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{98-r}\cdot10\right)-1

We can take that 10 common out of the sum.

\displaystyle\longrightarrow 9^{99}=10\left(\sum_{r=0}^{98}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{98-r}\right)-1

Taking \displaystyle\sum_{r=0}^{98}\ (-1)^r\cdot\,^{99}\!C_r\cdot10^{98-r}=k,

\displaystyle\longrightarrow 9^{99}=10k-1

\displaystyle\longrightarrow 9^{99}=10(k-1+1)-1

\displaystyle\longrightarrow 9^{99}=10k-10+10-1

\displaystyle\longrightarrow 9^{99}=10(k-1)+10-1

\displaystyle\longrightarrow 9^{99}=10(k-1)+9

Now 9^{99} is in the form of 10x+y whose unit digit is y.

Here x=k-1 and y=9.

Thus we can conclude that the unit digit of 9^{99} is \bf{9}.

Hence 9 is the answer.

Answered by pulakmath007
4

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

  \displaystyle{9}^{99}

 =   \displaystyle{(10 - 1)}^{99}

On Expansion we get

 = {10}^{99}  -  \binom{99}{1}  {10}^{98}  + \binom{99}{2}  {10}^{97}  + .......... + \binom{99}{98}  {10}^{1}  - \binom{99}{99}   \times 1

 = 10  \{ {10}^{98}  -  \binom{99}{1}  {10}^{97}  + \binom{99}{2}  {10}^{96}  + .......... + \binom{99}{98}   \}- 1

Since the expression

10  \{ {10}^{98}  -  \binom{99}{1}  {10}^{97}  + \binom{99}{2}  {10}^{96}  + .......... + \binom{99}{98}   \}

is a multiple of 10. So the unit digit of the expression

10  \{ {10}^{98}  -  \binom{99}{1}  {10}^{97}  + \binom{99}{2}  {10}^{96}  + .......... + \binom{99}{98}   \}

must be 0

Hence the unit digit of the expression

10  \{ {10}^{98}  -  \binom{99}{1}  {10}^{97}  + \binom{99}{2}  {10}^{96}  + .......... + \binom{99}{98}   \}- 1

must be 9

So the unit digit of  {9}^{99} is 1

Similar questions