Write the value of cosec² (90° − θ) − tan² θ.
Answers
Answered by
5
Answer:
The value of cosec²(90° - θ) − tan² θ is 1.
Step-by-step explanation:
Given : cosec²(90° - θ) − tan² θ
= {cosec(90° - θ)²} − tan² θ
= sec θ² - tan² θ
[By using , cosec(90°- θ ) = sec θ ]
cosec²(90° - θ) − tan² θ = 1
[By using an identity sec² θ - tan² θ = 1]
Hence, the value of cosec²(90° - θ) − tan² θ is 1.
HOPE THIS ANSWER WILL HELP YOU…
Answered by
1
According to the Question:
⇒ cosec²(90° - θ) − tan² θ
⇒ [cosec(90° - θ)²] − tan² θ
⇒ sec θ² - tan² θ
Note: Using - [ cosec(90°- θ ) = sec θ ]
⇒ cosec²(90° - θ) − tan² θ = 1
Note: Using identity - [ sec² θ - tan² θ = 1 ]
⇒ cosec²(90° - θ) − tan² θ
⇒ 1 ______________[ANSWER]
Similar questions