Write the value of cosec² tita - cot² tita
Answers
Answer:
Sin θ = Opposite side / Hypotenuse side
Cos θ = Adjacent side / Hypotenuse side
Tan θ = Opposite side / Adjacent side
Csc θ = Hypotenuse side / Opposite side
Sec θ = Hypotenuse side / Adjacent side
Cot θ = Adjacent side / Opposite side
Reciprocal Trigonometric Identities
Sinθ = 1 / Cosecθ
Cscθ = 1 / Sinθ
Cosθ = 1 / Secθ
Secθ = 1 / Cosθ
Tanθ = 1 / Cotθ
Cotθ = 1 / Tanθ
Other Trigonometric Identities
Sin²θ + Cos²θ = 1
Sin²θ = 1 - Cos²θ
Cos²θ = 1 - Sin²θ
Sec²θ - Tan²θ = 1
Sec²θ = 1 + Tan²θ
Tan²θ = Sec²θ - 1
Csc²θ - Cot²θ = 1
Csc²θ = 1 + Cot²θ
Cot²θ = Csc²θ - 1
Double Angle Identities
Sin2A = 2 ⋅ SinA ⋅ CosA
Cos2A = Cos²A - Sin²A
Tan2A = 2 ⋅ TanA / (1 - Tan²A)
Cos2A = 1 - 2 ⋅ Sin²A
Cos2A = 2 ⋅ Cos²A - 1
Sin2A = 2 ⋅ TanA / (1 + Tan²A)
Cos2A = (1 - Tan²A) / (1 + Tan²A)
Sin²A = (1 - Cos2A) / 2
Cos²A = (1 + Cos2A) / 2
Half Angle Identities
SinA = 2 ⋅ Sin(A/2) ⋅ Cos(A/2)
CosA = Cos²(A/2) - Sin²(A/2)
TanA = 2 ⋅ Tan(A/2) / [1 - Tan²(A/2)]
CosA = 1 - 2 ⋅ Sin²(A/2)
CosA = 2 ⋅ Cos²(A/2) - 1
SinA = 2 ⋅ Tan(A/2) / [1 + Tan²(A/2)]
CosA = [1 - Tan²(A/2)] / [1 + Tan²(A/2)]
Sin²A/2 = (1 - Cos A) / 2
Cos²A/2 = (1 + Cos A) / 2
Tan²(A/2) = (1 - CosA) / (1 + CosA)
Compound Angles Identities
Sin(A + B) = SinA ⋅ CosB + CosA ⋅ SinB
Sin(A + B) = SinA ⋅ CosB + CosA ⋅ SinB
Cos(A + B) = CosA ⋅ CosB - SinA ⋅ SinB
Cos(A - B) = CosA ⋅ CosB + SinA ⋅ SinB
Tan(A + B) = [TanA + TanB] / [1- TanA ⋅ TanB]
Tan(A - B) = [TanA - TanB] / [1 + TanA ⋅ TanB]
Sum to Product Identities
SinC + SinD = 2 ⋅ Sin[(C+D) / 2] ⋅ cos [(C-D) / 2]
SinC - SinD = 2 ⋅ Cos [(C+D) / 2] ⋅ Sin [(C-D) / 2]
CosC + CosD = 2 ⋅ Cos [(C+D) / 2] ⋅ Cos [(C-D) / 2]
CosC - CosD = 2 ⋅ Sin [(C+D) / 2] ⋅ Sin [(C-D) / 2]
Triple Angle Identities
Sin3A = 3 ⋅ SinA - 4 ⋅ sin³A
Cos3A = 4 ⋅ Cos³A - 3 ⋅ Cos A
Tan3A = [3 ⋅ TanA - Tan³A] / [1 - 3 ⋅ Tan²A]