Math, asked by Aadi2735, 6 months ago

Write the value of k for which the system of equations x+y-4=0 and 2x+ky-3=0has no solution

Answers

Answered by Pakiki
19

Step-by-step explanation:

 \sf \: a_1x + b_1y + c_1 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....1

 \sf \: a_2x + b_2y + c_2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....2

 \color{red} \sf \: No  \: solution

\implies \sf  \frac{a_1}{a_2}  =  \frac{b_1}{b_2}   \:  \cancel= \:   \frac{c_1}{c_2}

 \sf \: x + y - 4 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....1

 \sf \: 2x + ky - 3 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....</strong><strong>2</strong><strong>

 \sf \: a_1 = 1 , b_1 = 1 , c_1 =  - 4

 \sf \: a_2 = 2 , b_2 = k , c_2 =  - 3

 \sf \:  \frac{a_1}{a_2}  =  \frac{b_1}{b_2} \:   \cancel =  \:  \frac{c_1}{c_2}

 \sf \:  \frac{1}{2}  =  \frac{1}{k }   \: \cancel =  \:  \frac{ - 4}{ - 3}

 \sf \frac{1}{2}  \:  \cancel  =  \:  \frac{4}{3}

 \sf \:  \frac{1}{2}  =  \frac{1}{k}

 \underline{ \underline{ \boxed{ \sf \color{red}k = 2  \:  }}}

Answered by ItzSecretBoy01
3

Answer:

Refers to above attachment.........

Attachments:
Similar questions