Physics, asked by SwathiSurampally123, 4 months ago

Write the value of PE : KE : TE.​

Answers

Answered by karthikeyavangala123
1

Answer:

-2 : 1 : -1

Explanation:

PE : KE : TE = -2 : 1 : -1

Answered by nirman95
2

Correct Question:

An electron is revolving around the nucleus, find the ratio of PE : KE : TE.

OR

A satellite is revolving around a planet, find the ratio of PE : KE : TE.

Solution:

Both these questions have the same answer with the same concept.

Whenever an electron or a satellite is revolving in a circular trajectory, we observe that the potential energy is twice the KE and opposite to the kinetic energy.

 \boxed{ \bf \: PE = - 2(KE)}

Now, total energy is the sum of PE and KE :

 \sf \therefore \: TE = PE + KE

 \sf \implies\: TE =  - 2(KE) + KE

 \sf \implies\: TE =  - (KE)

So, the ratio comes as :

 \sf \therefore \: PE : KE : TE =  - 2( KE): KE :  - (KE)

 \sf \implies\: PE : KE : TE =  - 2: 1 :  - 1

So, final answer is :

 \boxed{ \bf\: PE : KE : TE =  - 2: 1 :  - 1}

______________________________________

Now, why PE = -2KE ?

For a satellite :

 \sf \: KE = \dfrac{1}{2} m {v}^{2}

 \implies \sf \: KE = \dfrac{1}{2} m { \bigg(  \sqrt{\dfrac{GM}{r} } \bigg)}^{2}

 \implies \sf \: KE = \dfrac{GMm}{2r}

Now, PE will be :

 \sf \: PE =  - mgh

 \implies \sf \: PE =  - m \times  \dfrac{GM}{ {r}^{2} } \times  r

 \implies \sf \: PE =  -  \dfrac{GMm}{ r}

 \implies \sf \: PE =  -  2(KE)

_______________________________________

Similar questions