write the value of sin(60+A)-cos(30-A).
Answers
Answer:
Let theta be equal to x.
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
The answer is 0
What is the value of sin (30+ theta)?
How do I solve cosx= -1/3?
What is the maximum value of sin theta?
What is the value of cot30?
How does sin2theta=1? How do you get the answer 1?
Sin(60° + θ) - cos(30° - θ) = ?
We can write ,
cos (30° - θ) = cos { 90° -(60° + θ)}= sin(60°+ θ)
Now, Sin(60° + θ) - cos(30° - θ)
= Sin(60° + θ) - sin(60°+ θ)
= 0
Artificial intelligence & machine learning program from NITW.
Sin(A+B)= Cos {90-(A+B)}
apply the same formula….
Cos(30-theta) = Cos {90-(60+theta)}=Sin(60+theta)
=> Sin(60+theta) - Cos(30-theta)
= Sin(60+theta) -Sin(60+theta)
=0
=Sin60costheta+ cos60.sintheta-(cos30.costheta+sin30sintheta)…
=√3/2.costheta+ 1/2 .sintheta-√3/2costheta -1/2.sintheta
=0
What is the value of cos (270+ theta)?
How is the value of sin (90+30) equal to cos (30)?
What is the value of sin 120°?
What is sin23π+cos24π+tan25π equal to?
How do we prove that 4 sin theta* sin (60+theta) *sin (120+theta) =sin 3 theta?
=]);
=
=0
sin(60+theta) - cos(30-theta)
Since sin(60+theta) = cos(30-theta)
sin(60+theta) - cos(30-theta) = cos(30-theta) - cos(30-theta) = 0.
Flaunt it your way with OPPO F17 Pro. Sleekest phone of 2020.
+sintheta-costheta
2sin(60+#);where # represents theta.
0(egg)
0
0
What is the value of sin (30+ theta)?
How do I solve cosx= -1/3?
What is the maximum value of sin theta?
What is the value of cot30?
How does sin2theta=1? How do you get the answer 1?
What is the value of cos (270+ theta)?
How is the value of sin (90+30) equal to cos (30)?
What is the value of sin 120°?
What is sin23π+cos24π+tan25π equal to?
How do we prove that 4 sin theta* sin (60+theta) *sin (120+theta) =sin 3 theta?
How is cot theta equal to tan theta?
If cos (60 + theta) = 0.49, then what is the approximate value of theta?
If cos 40° = m and sin 10° = n, what is sin 50° in terms of m and n?
If sinθ+2cosθ=1 , then what is a proof that 2sinθ−cosθ=2 ?
Let theta be equal to x.
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
The answer is 0
sin(60° + A) - cos(30° - A) = 0.