Math, asked by reetasharma705677417, 10 months ago

write the value of {xa/xb}a+b × {xb/xc}b+c × {xc/xa}c+a​

Answers

Answered by RvChaudharY50
146

||✪✪ CORRECT QUESTION ✪✪||

write the value of (X^a/x^b)^(a+b) * (x^b/x^c)^(b+c) * (x^c/x^a)^(c+a).

|| ★★ FORMULA USED ★★ ||

  • (X^a/x^b) = x^(a-b)
  • (x^a)^b = (x)^ab
  • (a+b)(a-b) = (a² - b²)
  • x^a * x^b * x^c = x^(a+b+c)
  • x^0 = 1

|| ✰✰ ANSWER ✰✰ ||

(X^a/x^b)^(a+b) * (x^b/x^c)^(b+c) * (x^c/x^a)^(c+a)

using (X^a/x^b) = x^(a-b) First we get,

{x^(a-b)}^(a+b)} * {x^(b-c)}^(b+c)} * {x^(c-a)}^(c+a)}

Using (x^a)^b = (x)^ab now, we get,

(x)^{(a-b)(a+b)} * (x)^{(b-c)(b+c)} * (x)^{(c-a)(c+a)}

Using (a+b)(a-b) = (a² - b²) Now,

(x)^{a² - b²} * (x)^{b²-c²} * (x)^{c²-a²}

using x^a * x^b * x^c = x^(a+b+c) now,

(x)^[ a² - b² + b² - c² + c² - a²]

(x)^0

using x^0 = 1 in last ,

1 (Ans.)

Answered by Sharad001
228

Question :-

Write the value of :

 \sf \large \red{\sf  \bigg\{ \frac{ {x}^{a} }{ {x}^{b}  }   \bigg\} ^{a + b} }\times   \green{ \bigg \{\frac{ {x}^{b} }{ {x}^{c} }   \bigg\} ^{ b + c }}\times  \pink{  \bigg\{ \frac{ {x}^{c} }{ {x}^{a} }  \bigg \} ^{c + a }}\\

Answer :-

→ 0

Solution :-

We have :

 \sf  \large\green{\sf  \bigg\{ \frac{ {x}^{a} }{ {x}^{b}  }   \bigg\} ^{a + b} }\times   \orange{ \bigg \{\frac{ {x}^{b} }{ {x}^{c} }   \bigg\} ^{ b + c }}\times  \purple{  \bigg\{ \frac{ {x}^{c} }{ {x}^{a} }  \bigg \} ^{c + a }}\\  \:  \\  \because  \boxed{\sf \frac{ {x}^{y} }{ {x}^{z} }  =  {x}^{(y - z)} } \\  \therefore \\  \\  \to \sf  \bold\{ \blue{ { {x}^{(a - b)} }^{(a + b)} } \} \times  \{ {  \red{{x}^{(b - c)} }^{(b + c)}\}} \times   \{{  \pink{{x}^{(c - a)} }^{(c + a)}  }\} \\  \\  \sf  \:  \:  \: \because \boxed{ \sf { {x}^{a} }^{b}  =  {x}^{ab} } \\  \\  \sf\to  \bold \: \sf \{ \pink{ { x }^{(a + b)(a - b)} } \} \times \{ \green{  {x}^{(b - c)(b + c)}  } \}\times  \{ \orange{ {x}^{(c + a)(c - a)} } \}

 \sf \because \boxed{  (x + y)( x - y) =  {x}^{2}   -  {y}^{2} } \\  \\  \therefore \\   \to \sf  \{  { x }^{ \red{{a}^{2} -  {b}^{2}  } } \} \times \{ \blue{  {x}^{( {b}^{2}  -  {c}^{2}) }  } \}\times  \{ \orange{ {x}^{( {c}^{2} -  {a}^{2}  )} } \} \\

We know that, power of same base be added .

 \to \sf \large  {x}^{ \red{ {a}^{2} } -  {b}^{2} +  \green{ {b}^{2}  - } {c}^{2}   +   \pink{{c}^{2}  -  {a}^{2} }}  \\   \\  \to  \large \boxed{\sf  {x}^{0}  = 1}

Similar questions