Write value of 2 (sin6x+cos 6x)-3 (sin4x+cos4x)-1
Answers
Answered by
0
1)sin^2A+cos^2A=1
2)1-sin^2A=cos^2A
3)1-cos^2A=sin^2A
=2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1
=2sin^6A+2cos^6A-3sin^4A-3cos^4A
+sin^2A+cos^2A
=2sin^6A+2cos^6A-2sin^4A-2cos^4A-sin^4A-cos^4A+sin^2A+cos^2A
=2sin^6A-2sin^4A+2cos^6A-2cos^4A
+sin^2A-sin^4A+cos^2A-cos^4A
=-2sin^4A(1-sin^2A)-2cos^4A(1-cos^2A)
sin^2A(1-sin^2A)+cos^2A(1-cos^2A)
=-2sin^4Acos^2A-2cos^4Asin^2A
+sin^2Acos^2A+cos^2Asin^2A
=-2sin^2Acos^2A(sin^2A+cos^2A)
+2sin^2Acos^2A
=-2sin^2Acos^2A+2sin^2Acos^2A
=0
Hence,
2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1=0
2)1-sin^2A=cos^2A
3)1-cos^2A=sin^2A
=2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1
=2sin^6A+2cos^6A-3sin^4A-3cos^4A
+sin^2A+cos^2A
=2sin^6A+2cos^6A-2sin^4A-2cos^4A-sin^4A-cos^4A+sin^2A+cos^2A
=2sin^6A-2sin^4A+2cos^6A-2cos^4A
+sin^2A-sin^4A+cos^2A-cos^4A
=-2sin^4A(1-sin^2A)-2cos^4A(1-cos^2A)
sin^2A(1-sin^2A)+cos^2A(1-cos^2A)
=-2sin^4Acos^2A-2cos^4Asin^2A
+sin^2Acos^2A+cos^2Asin^2A
=-2sin^2Acos^2A(sin^2A+cos^2A)
+2sin^2Acos^2A
=-2sin^2Acos^2A+2sin^2Acos^2A
=0
Hence,
2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1=0
Similar questions