Math, asked by keval419, 1 year ago

Write whether 6 root 45 +4 root 20+ root 405 divided by root 1050

Answers

Answered by kalivarapuktrao394
7

(6√45 +4√20 +√405)÷√1050

6√45=6×3√5 =18√5

4√20=4×2√5 =8√5

√405=9√5

√1050=5√42

Hence, (18√5 +8√5 +9√5)÷(5√42)

=35√5÷(5√42)

=7√5÷√42

=√(35÷6)

≈2.4152

Answered by pinquancaro
9

Answer:

The given number is an irrational number.

Step-by-step explanation:

Given : 6 root 45 +4 root 20+ root 405 divided by root 1050

To find : Write whether the number divided by root 1050?

Solution :

We write the given expression in

6\sqrt{45} +4\sqrt{20} + \sqrt{405} divided by \sqrt{1050}

Now we divide,

=\frac{6\sqrt{45}+4\sqrt{20}+\sqrt{405}}{\sqrt{1050}}

=\frac{6\sqrt{9\times5}+4\sqrt{4\times 5}+\sqrt{81\times 5}}{\sqrt{25\times42}}

=\frac{6\times3\sqrt{5}+4\times2\sqrt{5}+9\sqrt{5}}{5\sqrt{42}}

=\frac{18\sqrt{5}+8\sqrt{5}+9\sqrt{5}}{5\sqrt{42}}

=\frac{\sqrt{5}(18+8+9)}{5\sqrt{42}}

=\frac{35\sqrt{5}}{5\sqrt{42}}

=\frac{7\sqrt{5}}{\sqrt{42}}

The given number is an irrational number.

Similar questions