English, asked by prefect2186, 1 year ago

Write your question here (Keep it simple and clear to get the best answer)
if a+1/a²=6,then a²+1/a²

Answers

Answered by RvChaudharY50
21

Correct Question :-- if (a+1/a) = 6 , Find a² + 1/a² ?

Formula used :--

  • (a+b)² = a² + b² + 2ab

Solution :--

→ (a+1/a) = 6

Squaring both sides we get,

(a+1/a)² = 6²

→ (a² + 1/a² + 2 * a * 1/a) = 36

→ a² + 1/a² + 2 = 36

→ a² + 1/a² = 36 -2

→ a² + 1/a² = 34 . (Ans).

Hence, The value of ( + 1/) will be 34.

Answered by Anonymous
25

\Huge{\underline{\green{\mathfrak{Ans}}{\mathfrak{wer :}}}}

\rule{200}{2}

\LARGE{\red{\bigstar}} {\underline{\orange{\sf{To \: Find :}}}}

We have to find the value of,

\sf{a^2 + \frac{1}{a^2}}

\rule{200}{2}

\LARGE{\red{\bigstar}} {\underline{\orange{\sf{Solution :}}}}

\sf{a + \frac{1}{a} = 6 .......(1)} \\ \\ \bf{Squaring \: both \: sides \: in \: equation \: 1.}

Using Identity :

------------------------------------------------

\Large{\sf{(a + b)^2 = a^2 + b^2 +2ab}}

------------------------------------------------

We get,

\sf{→a^2 + (\frac{1}{a})^2 + 2(\cancel a)(\frac{1}{\cancel a}) = 36}\\ \\ \sf{→a^2 + \frac{1}{a^2} + 2 = 36} \\ \\ \sf{→a^2 + \frac{1}{a^2} = 36 - 2}\\ \\ \sf{→a^2 + \frac{1}{a^2} = 34}

Similar questions