Writing Task 2
Tell other members of the club something about yourself. Fill in the form. Write in sentences. Use 20-30 words.
Teens International
What do you usually do after school?
Answers
Answer:
Answer:
\sf{The \ length \ of \ perpendicular \ from}The length of perpendicular from
\sf{opposite \ vertex \ to \ the \ side \ whose \ length}opposite vertex to the side whose length
\sf{is \ 13 \ cm \ is \ 4.61 \ cm}is 13 cm is 4.61 cm
Given:
The lengths of the side of a triangle are
5 cm, 12 cm and 13 cm
To find:
The length of perpendicular from the opposite vertex to the side whose length is 13 cm
Solution:
\sf{By \ heron's \ formula}By heron
′
s formula
\sf{s=\frac{a+b+c}{2}}s=
2
a+b+c
\sf{\therefore{s=\frac{5+12+13}{2}}}∴s=
2
5+12+13
\sf{\therefore{s=15}}∴s=15
\sf{Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)}}Area of triangle=
s(s−a)(s−b)(s−c)
\sf{=\sqrt{15(15-5)(15-12)(15-13)}}=
15(15−5)(15−12)(15−13)
\sf{=\sqrt{15\times10\times3\times3}}=
15×10×3×3
\sf{=\sqrt{30\times30}}=
30×30
\sf{\therefore{Area \ of \ triangle=30 \ cm^{2}}}∴Area of triangle=30 cm
2
\boxed{\sf{Area \ of \ triangle=\frac{1}{2}\times \ Breadth\times \ Height}}
Area of triangle=
2
1
× Breadth× Height
\sf{\therefore{30=\frac{1}{2}\times13\times \ h}}∴30=
2
1
×13× h
\sf{\therefore{h=\frac{30\times2}{13}}}∴h=
13
30×2
\sf{\therefore{h=4.61 \ cm(approx)}}∴h=4.61 cm(approx)
\sf\purple{\tt{\therefore{The \ length \ of \ perpendicular \ from}}}∴The length of perpendicular from
\sf\purple{\tt{opposite \ vertex \ to \ the \ side \ whose \ length}}opposite vertex to the side whose length
\sf\purple{\tt{is \ 13 \ cm \ is \ 4.61 \ cm}}is 13 cm is 4.61 cm