English, asked by saraj8589, 9 months ago

Writing Task 2

Tell other members of the club something about yourself. Fill in the form. Write in sentences. Use 20-30 words.

Teens International
What do you usually do after school?

Answers

Answered by Joa466
1

Answer:

Answer:

\sf{The \ length \ of \ perpendicular \ from}The length of perpendicular from

\sf{opposite \ vertex \ to \ the \ side \ whose \ length}opposite vertex to the side whose length

\sf{is \ 13 \ cm \ is \ 4.61 \ cm}is 13 cm is 4.61 cm

Given:

The lengths of the side of a triangle are

5 cm, 12 cm and 13 cm

To find:

The length of perpendicular from the opposite vertex to the side whose length is 13 cm

Solution:

\sf{By \ heron's \ formula}By heron

s formula

\sf{s=\frac{a+b+c}{2}}s=

2

a+b+c

\sf{\therefore{s=\frac{5+12+13}{2}}}∴s=

2

5+12+13

\sf{\therefore{s=15}}∴s=15

\sf{Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)}}Area of triangle=

s(s−a)(s−b)(s−c)

\sf{=\sqrt{15(15-5)(15-12)(15-13)}}=

15(15−5)(15−12)(15−13)

\sf{=\sqrt{15\times10\times3\times3}}=

15×10×3×3

\sf{=\sqrt{30\times30}}=

30×30

\sf{\therefore{Area \ of \ triangle=30 \ cm^{2}}}∴Area of triangle=30 cm

2

\boxed{\sf{Area \ of \ triangle=\frac{1}{2}\times \ Breadth\times \ Height}}

\boxed{\sf{Area \ of \ triangle=\frac{1}{2}\times \ Breadth\times \ Height}}

Area of triangle=

2

1

× Breadth× Height

\sf{\therefore{30=\frac{1}{2}\times13\times \ h}}∴30=

2

1

×13× h

\sf{\therefore{h=\frac{30\times2}{13}}}∴h=

13

30×2

\sf{\therefore{h=4.61 \ cm(approx)}}∴h=4.61 cm(approx)

\sf\purple{\tt{\therefore{The \ length \ of \ perpendicular \ from}}}∴The length of perpendicular from

\sf\purple{\tt{opposite \ vertex \ to \ the \ side \ whose \ length}}opposite vertex to the side whose length

\sf\purple{\tt{is \ 13 \ cm \ is \ 4.61 \ cm}}is 13 cm is 4.61 cm

Similar questions