Math, asked by sahasritvik2408, 1 month ago

wron answer will be reported and fast

Attachments:

Answers

Answered by maitrypatel417
1

Step-by-step explanation:

15)

{( {2})^{2}  -  (\sqrt{5}) {}^{2}  }  </p><p>\frac{1}{2 +  \sqrt{3}  }  +  \frac{1}{ \sqrt{5} -  \sqrt{ 3 }  }  +  \frac{1}{2 -  \sqrt{5} }  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }    +  \:  \frac{1}{ \sqrt{5}  -  \sqrt{3} }  \times   \frac{ \sqrt{5 }  +  \sqrt{3} }{ \sqrt{5}  +   \sqrt{3} }  +  \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} }  \\  =  \frac{2 -  \sqrt{3} }{(2) {}^{2} - ( {  { \sqrt{3} )}^{2}  }  }  +  \frac{ \sqrt{5} +  \sqrt{3}  }{ ({ \sqrt{5} )}^{2} -  (\sqrt{3})  {}^{2}  }   +  \frac{2 +  \sqrt{5} }{( {2})^{2}  -  (\sqrt{5}) {}^{2}  } \\  =  \frac{2 -  \sqrt{3} }{4 - 3  }  +  \frac{ \sqrt{5} +  \sqrt{3}  }{5 - 3}  +  \frac{2 +  \sqrt{5} }{4 - 5}  \\ =   \frac{2 -  \sqrt{3} }{1}  +   \frac{ \sqrt{5}  +  \sqrt{3} }{2}  +  \frac{2 +  \sqrt{5} }{ - 1}  \\  = lets \: take \: lhs \\  =   \frac{ - 4  + 2 \sqrt{3}  -  \sqrt{5} -  \sqrt{3}   + 4 + 2 \sqrt{5}  }{ - 2}  \\  =  \frac{ \sqrt{3}  -  \sqrt{5} }{ - 2}

Similar questions