Math, asked by Anonymous, 2 months ago

wrong answers will be reported!!​

Attachments:

Answers

Answered by shadowsabers03
18

We're given to solve the equation,

\longrightarrow\log_x2\times\log_{\frac{x}{16}}2=\log_{\frac{x}{64}}2

Since \log_ba=\dfrac{\log a}{\log b},

\longrightarrow\dfrac{\log2}{\log x}\times\dfrac{\log2}{\log\left(\dfrac{x}{16}\right)}=\dfrac{\log2}{\log\left(\dfrac{x}{64}\right)}

Dividing by \log2,

\longrightarrow\dfrac{\log2}{\log x}\times\dfrac{1}{\log\left(\dfrac{x}{16}\right)}=\dfrac{1}{\log\left(\dfrac{x}{64}\right)}

\longrightarrow\dfrac{\log2}{\log x\log\left(\dfrac{x}{16}\right)}=\dfrac{1}{\log\left(\dfrac{x}{64}\right)}

Taking the reciprocal,

\longrightarrow\dfrac{\log x\log\left(\dfrac{x}{16}\right)}{\log2}=\log\left(\dfrac{x}{64}\right)

\longrightarrow\log x\log\left(\dfrac{x}{16}\right)=\log2\log\left(\dfrac{x}{64}\right)

Since \log\left(\dfrac{a}{b}\right)=\log a-\log b,

\longrightarrow\log x\left(\log x-\log16\right)=\log2\left(\log x-\log64\right)

Let \log x=k. Then,

\longrightarrow k\left(k-\log16\right)=\log2\left(k-\log64\right)

\longrightarrow k\left(k-\log(2^4)\right)=\log2\left(k-\log(2^6)\right)

Since \log(a^b)=b\,\log a,

\longrightarrow k\left(k-4\log2\right)=\log2\left(k-6\log2\right)

\longrightarrow k^2-4k\log2=k\log2-6\log^22

\longrightarrow k^2-5k\log2+6\log^22=0

\longrightarrow k^2-2k\log2-3k\log 2+6\log^22=0

\longrightarrow k(k-2\log2)-3\log 2(k-2\log2)=0

\longrightarrow(k-2\log2)(k-3\log2)=0

\Longrightarrow k\in\{2\log2,\ 3\log2\}

\longrightarrow\log x\in\{2\log2,\ 3\log2\}

\longrightarrow x\in\{2^2,\ 2^3\}

\longrightarrow\underline{\underline{x\in\{4,\ 8\}}}

These are the solutions to the equation.

Answered by ItzBrainlyResponder
18

❍ Given :\\

{\red{\sf{\dag \:  \: log_x \: 2 \:  \times  \: log_ \frac{x}{16} \: 2 \:  =  \: log_ \frac{x}{64} \: 2.}}}

\\

❍ Exigency To Do : We have to solve the following equation for x.

\\

❍ Solution :\\

{\sf{\bigstar\:\:log_x \: 2 \:  \times  \: log_ \frac{x}{16} \: 2 \:  =  \: log_ \frac{x}{64} \: 2.}}\\

We can write the equation as :

  {\quad \longmapsto\:  \: \sf{ \bigg( \dfrac{ \cancel{log \: 2}}{log \: x} \bigg) \bigg( \dfrac{log \: 2}{log \: \frac{x}{16} } \bigg) \:  =  \: \bigg( \dfrac{ \cancel{log \: 2}}{log \: \frac{x}{64} } \bigg)  }}\\

Here, log 2 is cancelled out, then we get :

\quad \longmapsto \:  \: \sf\frac{log \: 2}{log \: x \: (log \: x  - 4 \: log \: 2 )}  \:  =  \:  \frac{1}{(log \: x - 6 \: log \: 2)} \\

Then let us assume log x be t , then we get :

 \quad \longmapsto \:  \:  \sf\frac{log \: 2}{t(t - 4 \: log \: 2)}    \: =  \:  \frac{1}{(t - 6 \: log \: 2)} \\

Then by cross multiplication, we get :

 \quad \longmapsto \:  \:  \sf t \: log \: 2 - 6 \: (log \: 2) {}^{2} = t {}^{2}   - 4 \: t \: log \: 2. \\

 \quad \longmapsto \:  \:  \sf{t {}^{2}  - 5 \: t \: log \: 2 + 6 \: (log \: 2) {}^{2}  \:  = \:  0}.\\

Then value of t :

 \quad \sf \longmapsto \:  \: t \:  =  \: 3 \: log \: 2 \: , \:2 \: log \: 2.

 \quad \sf \longmapsto \:  \: t \:  =  \: log \: 8 \: , \: log \: 4. \\

Substituting the value of t :

 \quad \sf \longmapsto \:  \: log\: x \:  =  \: log \: 8 \: , \:log \:x \:=\:log \: 4. \\

Then value of x :

 \quad \purple{\sf {\dag \:  \: x \:  =  \: 8 \: , \: x \: = \: 4 \:\:\checkmark}}.\\

★ ═════════════════════ ★

\\

❍ Answer :\\

 \quad \purple{\sf {\dag \:  \: x \:  =  \: 8 \: , \: x \: = \: 4 \:\:\checkmark}}.\\

✰ ─╼━━━━━━──╼━━━━━━─ ✰

Similar questions