Math, asked by praveenkumar3053, 6 months ago

x = 1/(1 - t ^ 2), y = 1 + t ^ 2 ,,,then find derivative of. dy/dx

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\underline\mathcal\red{Answer}

\underline{\underline{{\purple{\sf Given\: values}}}}

 \:  \:  \:  \:  \:  \star \bf{x =  \frac{1}{(1 -  {t}^{2} )}  \:  \: and \: y = 1 +  {t}^{2} }

 \:  \:  \:  \:  \: \:  \bigstar \boxed{ \rm{ \: to \: find \: the \: derivative \: of \frac{dy}{dx} }}

 \:  \:  \:  \:  \:  \ \ \dashrightarrow \boxed{ \sf \pink{solution}}

 \:  \:  \:  \:  \:  \:  \implies \rm{x =  \frac{1}{(1 -  {t}^{2} )} }

 \:  \:  \:  \:    \clubsuit \bf {differentiating \: equation \: with \: respect \: to \: t}

 \:  \:  \:  \:  \blue \star \boxed{ \sf{x =  {(1 -  {t}^{2} )}^{ - 1} }}

 \:  \:  \:  \:  \implies \sf{ \frac{dx}{dt}  =  - 1(1 -  {t}^{2} )^{ - 2}   \times (0 - 2t)}..........by \: using \: chain \: rule

 \:  \:  \:  \implies \sf{ \frac{dx}{dt }=   ( - 1)( - 2t)(1 -  {t}^{2} )}

 \:  \:  \:  \:  \implies \sf{ \frac{dx}{dt }  = 2t(1 -  {t}^{2} ).......(1)eqn}

 \:  \:   \:  \:  \blue \star \boxed{ \sf{y = 1 +  {t}^{2} )}}

 \:  \implies  \bf{ differentiating \: with \: respect \: to \: t}

 \:  \:  \:  \:  \implies \sf{ \frac{dy}{dt}  = 1 +  {t}^{2} }

 \:  \:  \:  \:  \implies \sf{ \frac{dy}{dt}  = 0 + 2t}

 \:  \:  \:  \:  \implies \sf{ \:  \frac{dy}{dt}  = 2t} \:  \:  \:  \:  \:  \:  \: ...........(2)eqn

 \:  \:  \:  \:  \boxed{ \bf{derivative \: of \:  \frac{dy}{dx} is}}

 \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm{ \: dividing \: both \: eqn \: to \: find \: derivative \: of \:  \frac{dy}{dx} }}

 \:  \:  \:  \:  \:  \implies \sf{ \frac{dy}{dx}  =  \frac{2t}{2t(1 -  {t}^{2} )} }

 \:  \:  \:  \:  \implies \sf{  \frac{dy}{dx}  =  \cancel \frac{2t}{2t}  \times  \frac{1}{(1 -  {t}^{2}) } }

  \:  \:  \bigstar \sf\frac{dy}{dx}  =  \frac{1}{(1 -  {t}^{2}) }

 \:  \:  \:  \:  \dashrightarrow \sf{the \: derivative \: of \:  \frac{dy}{dx} is \:  \frac{1}{(1 -  {t}^{2}) } }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions