Math, asked by sandeeppabbi, 1 year ago

x=1/2-√3,then find the value of [x-1/x]​

Attachments:

Answers

Answered by Brainly100
9

GIVEN :-

x =  \frac{ 1}{2 -  \sqrt{3} }

TO FIND :-

x -  \frac{1}{x}

SOLUTION :-

First we shall find the value of x by rationalising the denominator ;

 \frac{1}{2 -  \sqrt{3} }  \times 1 \\  \\  \\  \\  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  \\  \\  =  \frac{2 +  \sqrt{3} }{ {2}^{2}  -{  \sqrt{3} }^{2} }  \\  \\  \\  \\  =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  \\  \\  =  \boxed{2 +  \sqrt{3} }

Now ,

 \frac{1}{x}  =  \frac{1}{ \frac{1}{2 -  \sqrt{3} } }  \\  \\  = \boxed{ 2 -  \sqrt{3} }

Hence,

x -  \frac{1}{x}  \\  \\  \\  = 2 +  \sqrt{3}  - (2 -  \sqrt{3} ) \\  \\  \\  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\  \\  =  \boxed{2 \sqrt{3} }

(ANSWER)

Answered by Anonymous
2

 \sf  \underline{given } :   \: \: x =  \frac{1}{2 -  \sqrt{3} }

\sf  \underline{to \: find } :   \: \: x -  \frac{1}{x}

 \sf x =  \frac{1}{2 -  \sqrt{3} }

rationalise the denominator.

\sf {\implies x =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }}

\implies\sf x =  \frac{2 +  \sqrt{3} }{ {2}^{2} -  {(\sqrt{3})}^{2} }

\implies\sf x =  \frac{2 +  \sqrt{3} }{4-  {3} }

\sf x =  {2  + \sqrt{3} }

now,

 \sf \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

rationalise the denominator.

 \implies\sf \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \implies\sf \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {2}^{2}   - {(\sqrt{3}) }^{2} }

\implies\sf \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ 4  - 3 }

\sf \frac{1}{x}  =  {2 -  \sqrt{3} }

Hence,

\sf x - \frac{1}{x}  =  2  +  \sqrt{3}  - (2 -  \sqrt{3} )

\sf x - \frac{1}{x}  =  2  +  \sqrt{3}  - 2  + \sqrt{3}

 \fbox{\sf x - \frac{1}{x}  =  2 \sqrt{3}}

Similar questions