Math, asked by 1234komal4321, 6 days ago

(x+1)^2 - 9
Don't spam or i will report ur answer​

Answers

Answered by garima24122006
1

Answer:

(+1)2−9

\left(x+1\right)^{2}-9

(+1)(+1)−9

(+1)(+1)−9

{\color{#c92786}{(x+1)(x+1)}}-9

(+1)+1(+1)−9

(+1)+1(+1)−9

x(x+1)+1(x+1)-9

(+1)++1−9

(+1)++1−9

x(x+1)+x+{\color{#c92786}{1}}{\color{#c92786}{-9}}

(+1)+−8

(+1)+−8

{\color{#c92786}{x(x+1)}}+x-8

2++−8

2++−8

x^{2}+{\color{#c92786}{x}}+{\color{#c92786}{x}}-8

2+2−8

(+1)2−9

(x+1)^{2}{\color{#c92786}{-9}}

2+4−2−8

2+4−2−8

x^{2}+4x-2x-8

(+4)−2(+4)

(+4)−2(+4)

x(x+4)-2(x+4)

(−2)(+4)

Answered by chaitanyashinde78
1

x = +

Step-by-step explanation:

(x+1)^2 - 9 = 0

x^2 + 1 - 9 = 0

x^2 - 8 = 0

x^2 = 8

x = √8

x = 2√2

second method

x^2 + 1 - 9 = 0

comparing with ax^2+ bx + c =0

a = 1

b = 1

c = -9

:. b^2 - 4ac

= 1^2 - 4×1×(-9)

= 1 - (-36)

= 1 + 36

= 37

x = - b ± √b^-4ac / 2a

= - 1 ± √37 / 2×1

= - 1 ± √37 / 2

:. x = -1 +√37 / 2 or :. x = -1 - √37 / 2

Similar questions