(x+1)^2 - 9
Don't spam or i will report ur answer
Answers
Answered by
1
Answer:
(+1)2−9
\left(x+1\right)^{2}-9
(+1)(+1)−9
(+1)(+1)−9
{\color{#c92786}{(x+1)(x+1)}}-9
(+1)+1(+1)−9
(+1)+1(+1)−9
x(x+1)+1(x+1)-9
(+1)++1−9
(+1)++1−9
x(x+1)+x+{\color{#c92786}{1}}{\color{#c92786}{-9}}
(+1)+−8
(+1)+−8
{\color{#c92786}{x(x+1)}}+x-8
2++−8
2++−8
x^{2}+{\color{#c92786}{x}}+{\color{#c92786}{x}}-8
2+2−8
(+1)2−9
(x+1)^{2}{\color{#c92786}{-9}}
2+4−2−8
2+4−2−8
x^{2}+4x-2x-8
(+4)−2(+4)
(+4)−2(+4)
x(x+4)-2(x+4)
(−2)(+4)
Answered by
1
x = +
Step-by-step explanation:
(x+1)^2 - 9 = 0
x^2 + 1 - 9 = 0
x^2 - 8 = 0
x^2 = 8
x = √8
x = 2√2
second method
x^2 + 1 - 9 = 0
comparing with ax^2+ bx + c =0
a = 1
b = 1
c = -9
:. b^2 - 4ac
= 1^2 - 4×1×(-9)
= 1 - (-36)
= 1 + 36
= 37
x = - b ± √b^-4ac / 2a
= - 1 ± √37 / 2×1
= - 1 ± √37 / 2
:. x = -1 +√37 / 2 or :. x = -1 - √37 / 2
Similar questions