Math, asked by irfannawaj04, 4 months ago

x=1/2[√(a/b) -√(b/a)]. then prove that [2a√(1+x^2)]/[x+√(1+x^2)]=a+b​

Answers

Answered by aryan073
6

Given :

 \\  \bullet \tt \: x =  \frac{1}{2}  \bigg( \sqrt{ \frac{a}{b} }  -  \sqrt{ \frac{b}{a} }  \bigg)

To Prove that :

  \\ \bullet \tt \:  \frac{2a( \sqrt{1 +  {x}^{2} }) }{(x +  \sqrt{1 +  {x}^{2}) } } = a + b

Proof :

Given,

  \\ \bullet \sf \: x =  \frac{1}{2}  \bigg( \sqrt{ \frac{a}{b} }  -  \sqrt{ \frac{b}{a} }  \bigg)

\\ \bullet\bf{Let , \: t=\dfrac{b}{a}}

•(since square root is defined on t, t cannot be negative)

then,

 \bullet \boxed{ \sf{x =  \frac{1}{2}  \bigg( \sqrt{ \frac{1}{t} }  -  \sqrt{t}  \bigg)}}

 \\  \implies \sf \: x =  \frac{1}{2}  \bigg( \ \sqrt{ \frac{1}{t} }  -  \sqrt{t}  \bigg) \\  \\  \\  \implies \sf \: x =  \frac{1}{2}  \bigg( \frac{1 - t}{ \sqrt{t} }  \bigg) \\  \\  \\  \implies \sf \: 2x \sqrt{t}  = 1 - t

\\ \bullet\red{\large\underline{\sf{Squaring \: both \: sides, \: we \: get :}}}

  \\  \implies \sf \: 4 {x}^{2} t = 1 +  {t}^{2}  - 2t \\  \\  \\  \implies \sf \:  {t}^{2}  - 2t(1 + 2 {x}^{2} ) + 1 = 0 \\  \\  \\  \implies \sf \: t =  \frac{2(1 + 2 {x}^{2} ) \pm \:  \sqrt{4}  {(1 + 2 {x}^{2} )}^{2}  - 4}{2}

But, t > 0

 \\  \implies \sf \: t = (1 + 2 {x}^{2} ) +  \sqrt{ {(1 + 2 {x}^{2} )}^{2} - 1 }   \\  \\  \\  \implies \sf \:t = (1 + 2 {x}^{2} ) +  \sqrt{(1 + 4 {x}^{2} + 4 {x}^{4}   - 1}  \\  \\  \\  \implies \sf \: t = (1 + 2 {x}^{2} ) +  \sqrt{4 {x}^{2} + 4 {x}^{4}  }  \\  \\  \\  \implies \sf \: t = (1 + 2 {x}^{2} ) + 2x \sqrt{ {x}^{2} + 1 }  \\  \\  \\  \implies \sf \: t + 1 = 1 + (1 + 2 {x}^{2} ) + 2x \sqrt{ {x}^{2}  + 1}  \\  \\  \\  \implies \sf \: t + 1 = 2(1 +  {x}^{2}  + x \sqrt{ {x}^{2} + 1 } ) \\

But t=b/a , so the above expressions becomes :

 \\  \implies \sf \:  \frac{b}{a}  + 1 = 2(1 +  {x}^{2}  + x \sqrt{ {x}^{2} + 1 } ) \\  \\  \\  \implies \sf \:  \bigg( \frac{a + b}{a}  \bigg) = 2(1 +  {x}^{2}  + x \sqrt{ {x}^{2}  + 1} ) \\  \\  \\  \implies \sf \: a + b = 2a(1 +  {x}^{2}  + x \sqrt{ {x}^{2} + 1 } )

\\ \bullet\green{\large\underline{\sf{Taking \: \sqrt{x^{2}+1} \: as \: a \: common ,\:  we \: get :}}}

 \\  \implies \sf \: a + b = 2a \sqrt{ {x}^{2}  + 1} (x +  \sqrt{ {x}^{2} + 1 } )

Hence,

 \pink \bigstar \boxed{  \sf{2a \sqrt{ {x}^{2} + 1 } (x +  \sqrt{ {x}^{2}  + 1}  )= a + b}}


Anonymous: In box Me xd
Similar questions