Math, asked by shreya102205, 9 months ago

x=1-√2 find the value of (x-1/x)^3​

Answers

Answered by 7001327952
1

Step-by-step explanation:

Givenx=1−

2

−−−(1)

\begin{lgathered}\frac{1}{x}=\frac{1}{1-\sqrt{2}}\\=\frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})}\end{lgathered}

x

1

=

1−

2

1

=

(1−

2

)(1+

2

)

1+

2

\begin{lgathered}=\frac{1+\sqrt{2}}{1^{2}-(\sqrt{2})^{2}}\\=\frac{1+\sqrt{2}}{1-2}\\=-(1+\sqrt{2})\:--(2)\end{lgathered}

=

1

2

−(

2

)

2

1+

2

=

1−2

1+

2

=−(1+

2

)−−(2)

\begin{lgathered}Now,\\\left(x-\frac{1}{x}\right)^{3}\\=\left(1-\sqrt{2}-[-(1+\sqrt{2})]\right)^{3}\\=\left(1-\sqrt{2}+1+\sqrt{2}\right)^{3}\\=2^{3}\\=8\end{lgathered}

Now,

(x−

x

1

)

3

=(1−

2

−[−(1+

2

)])

3

=(1−

2

+1+

2

)

3

=2

3

=8

Therefore,

\left(x-\frac{1}{x}\right)^{3}=8(x−

x

1

)

3

=8

Similar questions