Math, asked by biswaspayel108, 1 day ago

X=1+√2 than show that {x-(1÷x)}^3=8

Answers

Answered by Rahul7895
0

Given:-

x = 1 +  \sqrt{2}

To Prove:-

(x -  \frac{1}{x} )  ^{3}  = 8

Solution:-

Substituting 1+√2 in place of x

that is

(x -  \frac{1}{x} ) ^{3}  \\ (1 +  \sqrt{2}  - ( \frac{1}{1 +  \sqrt{2} } )) ^{3} = 8 \\

Rationalize

(1 +  \sqrt{2}  - ( \frac{1}{1 +  \sqrt{2}    }  \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} } )) ^{3}   \\ = 8 \\ (1 +  \sqrt{2}  - ( \frac{1 -  \sqrt{2} }{ 1 - 2} )) ^{3}  \\ (1 +  \sqrt{2}  - ( - (1 -  \sqrt{2} )) ^{3}  = 8 \\ (1 +  \sqrt{2}  + (1 -  \sqrt{2} )) ^{3}  = 8 \\ (1 +  \sqrt{2}  + 1 -  \sqrt{2} ) ^{3} = 8 \\  {2}^{3}   = 8 \\ 8 = 8

L.H.S=R.H.S

hence verified

Similar questions