x+ 1/2x=4 , x^3+1/8x^3
Answers
Answered by
2
Solution:
Given That:
Cubing both sides, we get:
We know:
Using this identity, we get:
Substituting the value from above, we get:
Which is our required answer.
Learn More:
Algebraic Identities.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b)² + (a - b)² = 2(a² + b²)
- (a + b)² - (a - b)² = 4ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Similar questions