Math, asked by niharikabokoliya, 4 months ago

(x+1)3-(x-1)3 saral kare​

Answers

Answered by bubbleflake
0

Answer:

6

Step-by-step explanation:

3(x+1)-3(x-1)

3x+3 -3x +3

=6

hope this helps:)

Answered by suraj5070
162

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \sf \bf {(x+1)}^{3}-{(x-1)}^{3}

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \implies {(x+1)}^{3}-{(x-1)}^{3}

 \sf \bf \implies {x}^{3}+{1}^{3}+3 \times x \times 1(x+1) - [{x}^{3}-{1}^{3}-3 \times x \times 1(x-1)]

 \sf \bf \implies {x}^{3}+1+3x (x+1) - [{x}^{3}-1-3x(x-1)]

 \sf \bf \implies {x}^{3}+1+3{x}^{2}+3x- [{x}^{3}-1-3{x}^{2}+3x]

 \sf \bf \implies {x}^{3}+1+3{x}^{2}+3x- {x}^{3}+1+3{x}^{2}-3x

 \sf \bf \implies \cancel {{x}^{3}} +1+3{x}^{2} \cancel {+3x} \cancel {- {x}^{3}} +1+3{x}^{2} \cancel {-3x}

 \sf \bf \implies 1+3{x}^{2}+1+3{x}^{2}

 \implies{\boxed {\boxed {\sf \bf 2+6{x}^{2}}}}

 \sf \bf  {Used\:Formulas}

 \sf \bf \implies {(a+b)}^{3}={a}^{3}+{b}^{3}+3ab(a+b)

 \sf \bf \implies {(a-b)}^{3}={a}^{3}-{b}^{3}-3ab(a-b)

 \sf \bf \huge {\boxed {\mathbb {HOPE\:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf \bf {Identities}

 \sf \bf \implies {(a+b)}^{3}={a}^{3}+{b}^{3}+3ab(a+b)

 \sf \bf \implies {(a-b)}^{3}={a}^{3}-{b}^{3}-3ab(a-b)

 \sf \bf {a}^{3}+{b}^{3}=(a+b) ({a}^{2}+{b}^{2}-ab)

 \sf \bf {a}^{3}-{b}^{3}=(a-b) ({a}^{2}+{b}^{2}+ab)

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions