Math, asked by Adityarajgarg, 1 year ago

(x^(-1/3)y^(-2/3))^6

Answers

Answered by Swarup1998
0
The \: \: answer \: \: is \: \: given\: \: below \\ \\ RULE \\ \\ {(xy)}^{a} = {x}^{a} \times {y}^{a} \\ \\ { ({x}^{p}) }^{ \frac{1}{q} } = {x}^{ \frac{p}{q} } \\ \\ {x}^{ - s} = \frac{1}{ {x}^{s} } \\ \\ SOLUTION \\ \\ Now, \: \: { ({x}^{ - \frac{1}{3} } \times {y}^{ - \frac{2}{3} } )}^{6} \\ \\ = { ({x}^{ - \frac{1}{3} } )}^{6} \times {( {y}^{ - \frac{2}{3} }) }^{6} \\ \\ = {x}^{ - \frac{6}{3} } \times {y}^{ - \frac{12}{3} } \\ \\ = {x}^{ - 2} \times {y}^{ - 4} \\ \\ = \frac{1}{ {x}^{2} } \times \frac{1}{ {y}^{4} } \\ \\ = \frac{1}{ {x}^{2} {y}^{4} } \\ \\ Thank \: \: you \: \: for \: \: the \: \: question.
Similar questions