Math, asked by mantashanoor, 11 months ago

X=1/4-x find the value of
1.x+1/X
2.x3+1/x3
3.x6+1/x6​

Attachments:

Answers

Answered by Anonymous
131

\mathfrak{\underline{\underline{Answer}}}

(i)\mathbf{ x + \frac{1}{x}= 4}

(ii) \mathbf{ {x}^{3}+ \frac{1}{{x}^{3}}= 52}

(iii)\mathbf{ {x}^{6}+ \frac{1}{x^{6}}= 2702}

\mathfrak{\underline{\underline{Explanation:-}}}

Given,

x = \dfrac{1}{4-x}

______________________________

(i) x + \dfrac{1}{x}

\mathbf{x = \frac{1}{4-x}  }

\mathbf{ \frac{1}{x}= 4-x}

\mathbf{ x + \frac{1}{x}= 4}

_______________________________

(ii) x³ + \frac{1}{{x}^{3}}

As we got,

\mathbf{ x +\frac{1}{x}= 4}

Now, by cubing on both sides

\mathbf{ (x + \frac{1}{{x}})^{3}= 4^{3}}

\boxed{{(a+b)}^{3}= {a}^{3}+{b}^{3}+3ab(a+b)}

\mathbf{ {x}^{3}+ \frac{1}{{x}^{3}}+3x ×\frac{1}{x}(x+\frac{1}{x})= 64}

\mathbf{ {{x}^{3}}+ \frac{1}{{x}^{3}}+3(4)= 64}

\mathbf{ {x}^{3}+ \frac{1}{{x}^{3}}+12= 64}

\mathbf{ {x}^{3}+ \frac{1}{{x}^{3}}= 64-12}

\mathbf{ {x}{3}+ \frac{1}{{x}^{3}}= 52}

_______________________________

(iii) {x}^{6}+\frac{1}{{x}^{6}}

As we have,

\mathbf{ {x}^{3}+ \frac{1}{{x}^{3}}= 52}

Now, by squaring on both sides

\mathbf{ ({x}^{3}+ \frac{1}{{x}^{3}})^{2}= {52}^{2}}

\boxed{{(a+b)}^{2} = {a}^{2}+{b}^{2}+2ab}

\mathbf{({{x}^{3}})^{2}+ \frac{1}{({x}^{3})^{2}}+2( {x}^{3} \times{\frac{1}{{x}^{3}}})= 2704}

\mathbf{ {x}^{6}+ \frac{1}{{x}^{6}}+2= 2704}

\mathbf{ {x}^{6}+ \frac{1}{{x}^{6}}= 2704-2}

\mathbf{ {x}^{6}+ \frac{1}{{x}^{6}}= 2702}


Anonymous: ty
Anonymous: wello ✌
Anonymous: Ty :)
Anonymous: superb!
sairambandari: Awesome ra ...U rocked it !!!!
Anonymous: ty :)
shanaya312: woah.,...!!!!! bro .... awesome.. keep it up!!!
Anonymous: :)
nisha1456: Awesome ❤
Answered by Anonymous
61

\mathfrak{\large{\underline{\underline{Answer :-}}}}

\boxed{\sf{(i)\:x + \dfrac{1}{x} = 4}}

\boxed{\sf{(ii)\:x^3 + \dfrac{1}{x^3} = 52}}

\boxed{\sf{(iii)\:{x}^{6} +  \dfrac{1}{ {x}^{6} } = 2702}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

\bf{x =  \dfrac{1}{4 - x} }

\bf{\implies{ \dfrac{1}{x} = 4 - x }}

\bf{\implies{\dfrac{1}{x} + x= 4}}

\bf{\implies{x + \dfrac{1}{x} = 4}}

\boxed{\sf{(i)\:x + \dfrac{1}{x} = 4}}

Now on cubing on both sides

\bf{\implies{{\left( \dfrac{1}{x} + x \right)}^{3} =  {4}^{3} }}

We know, that (a + b)³ = a³ + b³ + 3ab(a + b)

Here a = x , b = 1/x

By substituting the values in the above identity we have,

\bf{\implies{{x}^{3} + \dfrac{1}{ {x}^{3}} + 3 \times x \times \dfrac{1}{x} \left(x +  \dfrac{1}{x} \right) = 64}}

\bf{\implies{{x}^{3} + \dfrac{1}{ {x}^{3}} + 3 \left( x +  \dfrac{1}{x} \right) = 64}}

We know that x + 1/x = 4 so substitute the value in the equation.

\bf{\implies{{x}^{3} + \dfrac{1}{ {x}^{3}} + 3(4) = 64}}

\bf{\implies{{x}^{3} + \dfrac{1}{ {x}^{3}} + 12 = 64}}

\bf{\implies{{x}^{3} + \dfrac{1}{ {x}^{3}} = 64 - 12}}

\boxed{\sf{(ii)\:x^3 + \dfrac{1}{x^3} = 52}}

Now squaring on both sides

\bf{{ \left( {x}^{3} +  \dfrac{1}{ {x}^{3}} \right)}^{2} =  {52}^{2} }

We know that, (a + b)² = a² + b² + 2ab

Here a = x³ , b = 1/x³

By substituting the values in the above identity we have,

\bf{{({x}^{3})}^{2} +  {({(\dfrac{1}{x})}^{3})}^{2} + 2 \times  {x}^{3} \times  \dfrac{1}{ {x}^{3} } = 2704}

\bf{\implies{{x}^{3 \times 2} +  {( \dfrac{1}{x})}^{3 \times 2} + 2 = 2704}}

\bf{\implies{{x}^{6} + {( \dfrac{1}{x})}^{6}= 2704 - 2}}

\bf{\implies{{x}^{6} +  \dfrac{1}{ {x}^{6} } = 2702}}

\boxed{\sf{(iii)\:{x}^{6} +  \dfrac{1}{ {x}^{6} } = 2702}}

\mathfrak{\large{\underline{\underline{Identities\:Used:-}}}}

[1] (a + b)³ = a³ + b³ + 3ab(a + b)

[2] (a + b)³ = a² + b² + 2ab


Anonymous: awesome bro ✌✌✌
Anonymous: Ty sis
Anonymous: superb ✌
janvi47: solid answer
sanskriti2468: give me answer of my posts question
Similar questions