Math, asked by samsahoo5126, 10 months ago

(x+1)^7 =? what is the value of this equation​

Answers

Answered by arpv2020
0

Answer:

x^9 + 3x^8 + 3x^7 + 13x^6 + 38x^5 + 13x^4 + 30x^3 + 15x^2 + 9x + 1

Step-by-step explanation:

IF YOU UNDERSTAND THE SOLUTION WELL PLEASE MARK AS BRAINLIEST

As per formula, if it is given a^7, then a^7 = a^6 X a

Just like that 7 = 2+2+2+1

a^7 = a^2 X a^2 X a^2 X a

(x+1)^7 = [(x+1)^2] X [(x+1)^2] X [(x+1)^2] X [(x+1)]

           = [x^2 + 2x + 1] X  [x^2 + 2x + 1] X  [x^2 + 2x + 1]  X [x+1]

           = [x^2 + 2x + 1]^2 X [(x+1)(x^2 + 2x + 1)]

           = [x^6 + 8x^3 + 1 +4x^3 + 4x + 2x^2] X [x^3 + 2x^2 + x+ x^2 + 2x + 1]

          =  [x^6 + 12x^3 + 2x^2 + 4x + 1] [x^3 + 3x^2 + 3x + 1]

           after multiplying the whole expression (it is very long, so I have not mentioned here), we get

         = x^9 + 3x^8 + 3x^7 + 13x^6 + 38x^5 + 13x^4 + 30x^3 + 15x^2 + 9x + 1

IF YOU UNDERSTAND THE SOLUTION WELL PLEASE MARK AS BRAINLIEST

Similar questions