Math, asked by rohitthebest2319, 1 month ago

x= 1+ cos theta/sin theta and y is= 1- cos theta /sin theta then find the relationship between x and y​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = \dfrac{1 + cos\theta }{sin\theta }

can be rewritten as

\rm :\longmapsto\:x =\dfrac{1}{sin\theta } + \dfrac{cos\theta }{sin\theta }

We know,

\green{ \boxed{ \sf{ \: \frac{1}{cosecx}  = sinx}}} \: and \: \green{ \boxed{ \sf{ \: \frac{cosx}{sinx}  = cotx}}}

So, using this, we get

\bf\implies \:x = cosec\theta  + cot\theta  -  -  - (1)

Now, Consider

\rm :\longmapsto\:y = \dfrac{1 -  cos\theta }{sin\theta }

\rm :\longmapsto\: =\dfrac{1}{sin\theta }  -  \dfrac{cos\theta }{sin\theta }

We know,

\green{ \boxed{ \sf{ \: \frac{1}{cosecx}  = sinx}}} \: and \: \green{ \boxed{ \sf{ \: \frac{cosx}{sinx}  = cotx}}}

So, using this,

\bf\implies \:y = cosec\theta -  cot\theta  -  -  - (2)

Now, we know that

\rm :\longmapsto\: {cosec}^{2}\theta  -  {cot}^{2}\theta  = 1

We know,

\red{ \boxed{ \sf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, using this,

\rm :\implies\:(cosec\theta  + cot\theta )(cosec\theta  - cot\theta ) = 1

\bf\implies \:xy = 1

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions