Math, asked by Parikshitta, 2 months ago

x+1 is a factor of the polynomial i) x^3+x^2-x+1 ii) x^3+x^2+x+1 iii) x^4+x^3+x^2+1 iv) x^4+3x^3+3x^2+x+1​

Answers

Answered by raamizhshikoh
1

This is a simple question.

Just substitute the value of x that is x+1=0 -> x=-1

and u will get the answer.

I hope it helps

Answered by SachinGupta01
8

 \bold{\tt \underline{ \underline{Concept \: of \: Remainder \: theorem : }} }

 \sf : \implies If \: p(x) \: is \: divided \: by \: x+a, \: then \: the \: remainder \: is \: p(-a)

 \sf : \implies If \: p(x) \: is \: divided \: by \: x - a, \: then \: the \: remainder \: is \: p(a)

 \sf : \implies Similarly, \: if \: f(x) \: is \: divided \: by \: 2x-1, \: then \: the \: remainder \: is \: p\bigg( \dfrac{1}{2} \bigg)

\bf \underline{ \underline{\maltese\:Solution } }

 \sf First \: find \: the \: zero \: of \: x+1, \: which \: is \: \bf \underline{x+1=0} \sf \: \: or \: \underline{ \: \bf x=-1}

 \bf \underline{Now},

 \bf (i) \: \sf \: x^{3} + x^{2} - x + 1

\sf \implies p( - 1) = ( - 1)^{3} + ( - 1)^{2} -( - 1 )+ 1

\sf \implies- 1 + 1 + 2 = 2

 \sf This \: is \: not \: zero,

 \sf Then \: x+1 \: is \: not \: the \: factor \: of \: equation.

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf (ii) \: \sf \: x^{3}+x^{2}+x+1

\sf \implies p( - 1) = ( - 1)^{3}+( - 1)^{2}+( - 1)+1

\sf \implies - 1+1+0 = 0

 \sf Then \: x+1 \: is \: factor \: of \: equation.

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf (iii) \: \sf \: x^4+x^3+x^2+1

\sf \implies p( - 1) = \: ( - 1)^4+( - 1)^3+( - 1)^2+1

\sf \implies 1+( - 1)+1+1

\sf \implies 0+2 = 2

 \sf This \: is \: not \: zero,

 \sf Then \: x+1 \: is \: not \: the \: factor \: of \: equation.

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf (iv) \: \sf \: x^4+3x^3+3x^2+x+1

\sf \implies p( - 1) = \:( - 1)^4+3( - 1)^3+3( - 1)^2+( - 1)+1

\sf \implies 1+( - 3)+3+0

\sf \implies - 2+3 = 1

 \sf This \: is \: not \: zero,

 \sf Then \: x+1 \: is \: not \: the \: factor \: of \: equation.

Similar questions