Math, asked by kimnova33, 2 months ago

(x – 1) is a factor of the polynomial p(x)=3x4 – 4x3 – ax + 2 then

the value of ‘a’.​

Answers

Answered by MathLoverHannu
27

Answer:

Value of a = 1

Step-by-step explanation:

 \tt \bold \red{༒︎To Fɪɴᴅ:-}

• p(x)=3x^4 – 4x^3 – ax + 2

 \tt \bold \red{༒︎Given:-}

• (x – 1) is a factor of the polynomial p(x)=3x4 – 4x3 – ax + 2

First we have to find value of x ,

 \tt \to x - 1 = 0 \\  \tt \to x = 1

Now put the value of x to find the value of a,

 \tt \to3  \times( {1})^{4}  - 4 \times  {1}^{3}  - a \times 1 + 2 = 0 \\  \tt \to3 \times 1 - 4 \times 1 - a + 2 = 0 \\  \tt \to3 - 4 + 2 - a = 0 \\  \tt \to1 - a = 0 \\  \tt \to - a =  - 1 \\  \tt \red{ \to a = 1}

_______________________________________

❀Tʜᴀɴᴋs ғᴏʀ ǫᴜᴇsᴛɪᴏɴ❀

Answered by pratyushara987
44

Answer:

Value of a = 1

Step-by-step explanation:

\tt \bold \red{༒︎To Fɪɴᴅ:-}

p(x)=3x^4 – 4x^3 – ax + 2

\tt \bold \red{༒︎Given:-}

(x – 1) is a factor of the polynomial p(x)=3x4 – 4x3 – ax + 2

First we have to find value of x ,

\begin{gathered} \tt \to x - 1 = 0 \\ \tt \to x = 1\end{gathered}

Now put the value of x to find the value of a,

\begin{gathered} \tt \to3 \times( {1})^{4} - 4 \times {1}^{3} - a \times 1 + 2 = 0 \\ \tt \to3 \times 1 - 4 \times 1 - a + 2 = 0 \\ \tt \to3 - 4 + 2 - a = 0 \\ \tt \to1 - a = 0 \\ \tt \to - a = - 1 \\ \tt \red{ \to a = 1}\end{gathered}

______________________________________

❀Tʜᴀɴᴋs ғᴏʀ ǫᴜᴇsᴛɪᴏɴ❀

Similar questions