x+1 = p ÷ x³+2x²-5kx-7
Answers
Answered by
13
Answer:
⇢ k = 2x^5 - x4 - 8x^3 + p/5x^4
Step-by-step explanation:
⇢ x + 1 = p x^3 + 2x^2 - 5kx - 7
⇢ x^4 + x^3 = -5k x^4 + 2x^5 - 7x^3 + p
⇢ -5kx^4 + 2x^5 - 7x^3 + p = x^4 + x^3
⇢ -5kx^4 + 2x^5 - 7x^3 + p + -2x^5 = x^4 + x^3 + -2x^5
⇢ -5kx^4 - 7x^3 + p = - 2x^5 + x^4 + x^3
⇢ -5kx^4 - 7x^3 + p + 7x^3 = -2x^5 + x^4 + x^3 + 7x^3
⇢ -5kx^4 + p = -2x^5 + x^4 + 8x^3
⇢ -5kx^4 + p + -p = -2x^5 + x^4 + 8x^3 + - p
⇢- 5kx^4 = -2x^5 + x^4 + 8x^3 - p
⇢ -5kx4/-5x4 = -2x^5 + x^4 + 8x^3 - p/-5x^4
⇢ k = 2x^5 - x4 - 8x^3 + p/5x^4
Similar questions