Math, asked by mathsdaily, 1 year ago

x=1+(root 2) and y=1-root 2
Find value of x^2+y^2​

Answers

Answered by Anonymous
2

 \sf{x = 1 +  \sqrt{2} } \\ \sf{ y = 1 -  \sqrt{2} }

 \sf {x}^{2}  =  {(1 +  \sqrt{2} )}^{2}

expand using \sf{{(a+b)}^{2}} formula

\sf {x}^{2}  =  { {1}^{2}  + ( \sqrt{2} )}^{2}  + 2(1)( \sqrt{2} ) \\ \sf {x}^{2}  =  { 1  + 2} + 2 \sqrt{2}  \\ \sf {x}^{2}  =   3 + 2\sqrt{2}

expand using \sf{{(a-b)}^{2}} formula

\sf {y}^{2}  =  { ({1}   -   \sqrt{2}) }^{2}  \\ \sf {y}^{2}  =  { {1}^{2}  + ( \sqrt{2} )}^{2}   - 2(1)( \sqrt{2} ) \\  \sf{ {y}^{2}  = 1 + 2 - 2 \sqrt{2} } \\ \sf{ {y}^{2}  = 3 - 2 \sqrt{2} }

now,

 \sf {x}^{2}  +  {y}^{2}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}

 \fbox{ \sf {x}^{2}  +  {y}^{2}  = 6}


mathsdaily: it is.
Similar questions