x+ 1 upon x = 2 then find x^3+ 1 upon x^3=?
Answers
Answer:
the answer is as follows
Step-by-step explanation:
[math]x + \dfrac{1}{x} = 3[/math]
[math](x + \dfrac{1}{x})^3 = 3^3[/math]
[math]x^3 + 3.x^2.\dfrac{1}{x} + 3.x.\dfrac{1}{x^2} + \dfrac{1}{x^3} = 27[/math]
[math](x^3 + \dfrac{1}{x^3}) + 3.x^2.\dfrac{1}{x} + 3.x.\dfrac{1}{x^2} = 27[/math]
[math]x^3 + \dfrac{1}{x^3} + (3x + \dfrac{3}{x}) = 27[/math]
[math]x^3 + \dfrac{1}{x^3} + 3(x + \dfrac{1}{x}) = 27[/math]
[math]x^3 + \dfrac{1}{x^3} + 3 × 3 = 27[/math]
[math]x^3 + \dfrac{1}{x^3} + 9 = 27[/math]
[math]x^3 + \dfrac{1}{x^3} = 18[/math]
Therefore the answer is 18
Answer:
Step-by-step explanation:
x+1/x =3
square both the sides-
x²+1/x² +2 ×x× 1/x =3²
x²+1/x² +2=9
x²+1/x² =7
Now to find value of x³+1/x³ first expand it
x³+1/x³ = (x+1/x) (x²+1/x² -1)
=(3)(7–1)
=3×6
x³+1/x³ =18